Abbott, B. W., and J. B. Jones, 2015: Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change Biology, 21, 4570–4587, https://doi.org/10.1111/gcb.13069.
Article
Google Scholar
Anand, R., J.-C. Germon, P. M. Groffman, J. M. Norton, L. Philippot, J. I. Prosser, and J. P. Schimel, 2012: Nitrogen transformations. Handbook of Soil Sciences: Properties and Processes, 2nd ed., P. M. Huang et al., Eds., Taylor & Francis Group, 2701–2753.
Google Scholar
Biskaborn, B. K., and Coauthors, 2019: Permafrost is warming at a global scale. Nature Communications, 10, 264, https://doi.org/10.1038/s41467-018-08240-4.
Article
Google Scholar
Chapin III, F. S., P. A. Matson, and P. M. Vitousek, 2011: Principles of Terrestrial Ecosystem Ecology. 2nd ed., Springer, 529 pp.
Book
Google Scholar
Chen, X. P., G. X. Wang, T. Zhang, T. X. Mao, D. Wei, Z. Y. Hu, and C. L. Song, 2017: Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow. Atmos. Environ., 157, 111–124, https://doi.org/10.1016/j.atmosenv.2017.03.024.
Article
Google Scholar
Cheng, G. D., and H. J. Jin, 2013: Permafrost and groundwater on the Qinghai-Tibet Plateau and in Northeast China. Hydrogeology Journal, 21, 5–23, https://doi.org/10.1007/s10040-012-0927-2.
Article
Google Scholar
Ciais, P., and Coauthors, 2013: Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds. Cambridge University Press, 465–570.
Google Scholar
Cui, Q., C. C. Song, X. W. Wang, F. X. Shi, X. Y. Yu, and W. W. Tan, 2018: Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China. Science of the Total Environment, 616-617, 427–434, https://doi.org/10.1016/j.scitotenv.2017.10.246.
Article
Google Scholar
Elberling, B., H. H. Christiansen, and B. U. Hansen, 2010: High nitrous oxide production from thawing permafrost. Nature Geoscience, 3, 332–335, https://doi.org/10.1038/ngeo803.
Article
Google Scholar
Fotelli, M. N., D. Tsikou, A. Kolliopoulou, G. Aivalakis, P. Katinakis, M. K. Udvardi, H. Rennenberg, and E. Flemetakis, 2011: Nodulation enhances dark CO2 fixation and recycling in the model legume Lotus japonicus. Journal of Experimental Botany, 62, 2959–2971, https://doi.org/10.1093/jxb/err009.
Article
Google Scholar
Guo, Y. D., C. C. Song, W. W. Tan, X. W. Wang, and Y. Z. Lu, 2018: Hydrological processes and permafrost regulate magnitude, source and chemical characteristics of dissolved organic carbon export in a peatland catchment of Northeastern China. Hydrology and Earth System Sciences, 22, 1081–1093, https://doi.org/10.5194/hess-22-1081-2018.
Article
Google Scholar
Harden, J. W., and Coauthors, 2012: Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett., 39, L15704, https://doi.org/10.1029/2012GL051958.
Article
Google Scholar
Hugelius, G., and Coauthors, 2014: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014.
Article
Google Scholar
Hugelius, G., C. Tarnocai, G. Broll, J. G. Canadell, P. Kuhry, and D. K. Swanson, 2013: The Northern Circumpolar Soil Carbon Database: Spatially distributed datasets of soil coverage and soil carbon storage in the Northern permafrost regions. Earth System Science Data, 5, 3–13, https://doi.org/10.5194/essd-5-3-2013.
Article
Google Scholar
IPCC, 2006: N2O emissions from managed soils, and CO2 emissions from lime and urea application. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, S. Eggleston et al., Eds., Cambridge University Press, 11 pp.
Google Scholar
IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, 151 pp.
Google Scholar
IUSS Working Group WRB, 2015: World reference base for soil resources 2014, update 2015: international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, 192 pp.
Google Scholar
Liu, C. Y., and X. H. Zheng, Institute of Atmospheric Physics, Chinese Academy of Sciences, Chamber-based automatic system for monitoring gas fluxes: ZL201611077565.5 [P], 2019. 04. 23.
Google Scholar
Liu, X.-Y., and Coauthors, 2018: Nitrate is an important nitrogen source for arctic tundra plants. Proceedings of the National Academy of Sciences of the United States of America, 115, 3398–3403, https://doi.org/10.1073/pnas.1715382115.
Article
Google Scholar
Marushchak, M. E., A. Pitkämäki, H. Koponen, C. Biasi, M. Seppälä, and P. J. Martikainen, 2011: Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Global Change Biology, 17, 2601–2614, https://doi.org/10.1111/j.1365-2486.2011.02442.x.
Article
Google Scholar
Mueller, C. W., J. Rethemeyer, J. Kao-Kniffin, S. Löppmann, K. M. Hinkel, and J. G. Bockheim, 2015: Large amounts of labile organic carbon in permafrost soils of Northern Alaska. Global Change Biology, 21, 2804–2817, https://doi.org/10.1111/gcb.12876.
Article
Google Scholar
Palmer, K., C. Biasi, and M. A. Horn, 2012: Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. The ISME Journal, 6, 1058–1077, https://doi.org/10.1038/ismej.2011.172.
Article
Google Scholar
Pan, Y. P., Y. S. Wang, G. Q. Tang, and D. Wu, 2012: Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China. Atmospheric Chemistry and Physics, 12, 6515–6535, https://doi.org/10.5194/acp-12-6515-2012.
Article
Google Scholar
Repo, M. E., S. Susiluoto, S. E. Lind, S. Jokinen, V. Elsakov, C. Biasi, T. Virtanen, and P. J. Martikainen, 2009: Large N2O emissions from cryoturbated peat soil in tundra. Nature Geoscience, 2, 189–192, https://doi.org/10.1038/ngeo434.
Article
Google Scholar
Rodionow, A., H. Flessa, O. Kazansky, and G. Guggenberger, 2006: Organic matter composition and potential trace gas production of per mafrost soils in the forest tundra in Northern Siberia. Geoderma, 135, 49–62, https://doi.org/10.1016/j.geoderma.2005.10.008.
Article
Google Scholar
Schimel, J., and J. Bennett, 2004: Nitrogen mineralization: Challenges of a changing paradigm. Ecology, 85, 591–602, https://doi.org/10.1890/03-8002.
Article
Google Scholar
Schuur, E. A. G., J. G. Vogel, K. G. Crummer, H. Lee, J. O. Sickman, and T. E. Osterkamp, 2009: The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556–559, https://doi.org/10.1038/nature08031.
Article
Google Scholar
Schuur, E. A. G., and Coauthors, 2013: Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 119, 359–374, https://doi.org/10.1007/s10584-013-0730-7.
Article
Google Scholar
Schuur, E. A. G., and Coauthors, 2015: Climate change and the permafrost carbon feedback. Nature, 520, 171–179, https://doi.org/10.1038/nature14338.
Article
Google Scholar
Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, 2009: Soil organic carbon pools in the Northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, GB2023, https://doi.org/10.1029/2008GB003327.
Article
Google Scholar
Valente, R. J., F. C. Thornton, and E. J. Williams, 1995: Field comparison of static and flow-through chamber techniques for measurement of soil NO emission. J. Geophys. Res., 100, 21147–21152, https://doi.org/10.1029/95JD01875.
Article
Google Scholar
van Cleve, K., and V. Alexander, 1981: Nitrogen cycling in tundra and boreal ecosystems. Ecol. Bull., 33, 375–404.
Google Scholar
Voigt, C., R. E. Lamprecht, M. E. Marushchak, S. E. Lind, A. Novakovskiy, M. Aurela, P. Martikainen, and C. Biasi, 2017a: Warming of subarctic tundra increases emissions of all three important greenhouse gases-carbon dioxide, methane, and nitrous oxide. Global Change Biology, 23, 3121–3138, https://doi.org/10.1111/gcb.13563.
Article
Google Scholar
Voigt, C., and Coauthors, 2017b: Increased nitrous oxide emissions from arctic peatlands after permafrost thaw. Proceedings of the National Academy of Sciences of the United States of America, 114, 6238–6243, https://doi.org/10.1073/pnas.1702902114.
Article
Google Scholar
Wilkerson, J., R. Dobosy, D. S. Sayres, C. Healy, E. Dumas, B. Baker, and J. G. Anderson, 2019: Permafrost nitrous oxide emissions observed on a landscape scale using the airborne eddy-covariance method. Atmospheric Chemistry and Physics, 19, 4257–4268, https://doi.org/10.5194/acp-19-4257-2019.
Article
Google Scholar
Zhang, W., C. Y. Liu, X. H. Zheng, Y. F. Fu, X. X. Hu, G. M. Cao, and K. Butterbach-Bahl, 2014: The increasing distribution area of zokor mounds weaken greenhouse gas uptakes by alpine meadows in the Qinghai-Tibetan Plateau. Soil Biology and Biochemistry, 71, 105–112, https://doi.org/10.1016/j.soilbio.2014.01.005.
Article
Google Scholar
Zhang, W., and Coauthors, 2018: A process-oriented hydro-biogeochemical model enabling simulation of gaseous carbon and nitrogen emissions and hydrologic nitrogen losses from a subtropical catchment. Science of the Total Environment, 616-617, 305–317, https://doi.org/10.1016/j.scitotenv.2017.09.261.
Article
Google Scholar
Zimov, S. A., E. A. G. Schuur, and F. S. Chapin ffixIII, 2006: Permafrost and the global carbon budget. Science, 312, 1612–1613, https://doi.org/10.1126/science.1128908.
Article
Google Scholar