Skip to main content
Log in

Simulation and Improvements of Oceanic Circulation and Sea Ice by the Coupled Climate System Model FGOALS-f3-L

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study documents simulated oceanic circulations and sea ice by the coupled climate system model FGOALS-f3-L developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, under historical forcing from phase 6 of the Coupled Model Intercomparison Project (CMIP6). FGOALS-f3-L reproduces the fundamental features of global oceanic circulations, such as sea surface temperature (SST), sea surface salinity (SSS), mixed layer depth (MLD), vertical temperature and salinity, and meridional overturning circulations. There are notable improvements compared with the previous version, FGOALS-s2, such as a reduction in warm SST biases near the western and eastern boundaries of oceans and salty SSS biases in the tropical western Atlantic and eastern boundaries, and a mitigation of deep MLD biases at high latitudes. However, several obvious biases remain. The most significant biases include cold SST biases in the northwestern Pacific (over 4°C), freshwater SSS biases and deep MLD biases in the subtropics, and temperature and salinity biases in deep ocean at high latitudes. The simulated sea ice shows a reasonable distribution but stronger seasonal cycle than observed. The spatial patterns of sea ice are more realistic in FGOALS-f3-L than its previous version because the latitude-longitude grid is replaced with a tripolar grid in the ocean and sea ice model. The most significant biases are the overestimated sea ice and underestimated SSS in the Labrador Sea and Barents Sea, which are related to the shallower MLD and weaker vertical mixing.

摘要

本文记录了中国科学院大气物理研究所大气科学和地球流体力学国家重点实验室开发的耦合气候系统模式FGOALS-f3-L参与第六次国际耦合模式比较计划(CMIP6)的历史强迫试验模拟的海洋环流和海冰。FGOALS-f3-L可以重现全球海洋环流的基本特征,包括海表面温度(SST)、海表面盐度(SSS)、混合层厚度(MLD)、垂直温度和盐度结构、以及经向翻转环流等。与上一版本模式FGOALS-s2相比,新版本模式表现出一些明显的改进,包括海洋东西边界地区SST暖偏差的减小、热带西大西洋和海洋东边界SSS咸偏差的减小、以及高纬度地区MLD深偏差的缓解。尽管如此,模拟的海洋中依然存在一些明显的偏差。最明显的偏差包括西北太平洋中的SST冷偏差(超过4°C)、副热带地区的SSS淡偏差和MLD深偏差、以及高纬度深层海洋中的温度和盐度偏差。模式模拟的海冰表现出合理的空间分布,但是模拟的海冰季节循环强于观测。FGOALS-f3-L中的海冰空间分布比其前一个版本更加真实,这是由于海洋和海冰模式中引入了三极网格替代了原有的经纬网格。整体海洋和海冰模拟中最显著的偏差就是拉布拉多海至巴伦支海一带偏多的海冰以及偏低的SSS,它们与这一区域偏浅的MLD以及偏弱的垂直混合有关。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (New Version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.

    Google Scholar 

  • Bao, Q., 2015: Finite-volume atmospheric model of the IAP/LASG (FAMIL). Proc. AGU Fall Meeting Abstracts, San Francisco, AGU.

    Google Scholar 

  • Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561–576, https://doi.org/10.1077/s00376-012-2113-9.

    Google Scholar 

  • Bates, S. C., B. Fox-Kemper, S. R. Jayne, W. G. Large, S. Stevenson, and S. G. Yeager, 2012: Mean biases, variability, and trends in air-sea fluxes and sea surface temperature in the CCSM4. J. Climate, 25, 7781–7801, https://doi.org/10.1175/JCLI-D-11-00442.1.

    Google Scholar 

  • Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2001: Ocean turbulence. Part I: One-point closure model—momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 1413–1426, https://doi.org/10.1157/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2.

    Google Scholar 

  • Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2002: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J. Phys. Oceanogr., 2, 240–264, https://doi.org/10.1175/1520-0485(2002)032<0240:OTPIVD>2.0.CO;2.

    Google Scholar 

  • Chassignet, E. P., and Coauthors, 2020: Impact ofhorizontal resolution on global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development Discussions, 2020, https://doi.org/10.5194/gmd-2019-374.

  • Cheng, W., J. C. H. Chiang, and D. X. Zhang, 2013: Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 7187–7197, https://doi.org/10.1175/JCLI-D-12-00496.1.

    Google Scholar 

  • Comiso, J. C., 2017: Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. [Available online from https://doi.org/10.5067/7Q8HCCWS4I0R]

  • Craig, A. P., M. Vertenstein, and R. Jacob, 2012: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. The International Journal of High Performance Computing Applications, 26, 31–42, https://doi.org/10.1177/1094342011428141.

    Google Scholar 

  • Danabasoglu, G., S. G. Yeager, Y.-O. Kwon, J. J. Tribbia, A. S. Phillips, and J. W. Hurrell, 2012: Variability of the atlantic meridional overturning circulation in CCSM4. J. Climate, 25, 5153–5172, https://doi.org/10.1175/JCLI-D-11-00463.1.

    Google Scholar 

  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937–1958, https://doi.org/10.5144/gmd-0-1377-2016.

    Google Scholar 

  • Ferreira, D., J. Marshall, and P. Heimbach, 2004: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 5, 1891–1910, https://doi.org/10.1175/JPO2785.1.

    Google Scholar 

  • Freeman, E., and Coauthors, 2017: ICOADS release 3.0: A major update to the historical marine climate record. International Journal of Climatology, 37, 2211–2232, https://doi.org/10.1002/joc.4775.

    Google Scholar 

  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the world ocean circulation experiment. J. Climate, 66, 696–705, https://doi.org/10.1175/1520-0442(2003)016<0696:LSOHAF>2.0.CO;2.

    Google Scholar 

  • Griffies, S. M., and Coauthors, 2011: The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 3520–3544, https://doi.org/10.1175/2011JCLI3964.1.

    Google Scholar 

  • Guo, Y. Y., Y. Q. Yu, P. F. Lin, H. L. Liu, B. He, Q. Bao, S. W. Zhao, and X. W. Wang, 2020: Overview of the CMIP6 historical experiment datasets with the climate system model CAS FGOALS-f3-L. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-020-2004-4.

  • He, B., and Coauthors, 2019: CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation. Adv. Atmos. Sci., 6, 771–778, https://doi.org/10.1007/s00376-019-9027-8.

    Google Scholar 

  • Huang, B. Y., and Coauthors, 2015: Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911–930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    Google Scholar 

  • Huang, C. J., F. L. Qiao, and Z. Y. Song, 2008: The effect of the wave-induced mixing on the upper ocean temperature in a climate model. Acta Oceanologica Sinica, 27, 104–111, https://doi.org/10.3969/j.issn.0253-505X.2008.03.011.

    Google Scholar 

  • Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The los alamos sea ice model documentation and software user’s manual version 4.1 LA-CC-06-012. T-3 Fluid Dynamics Group, Los Alamos National Laboratory. [Available online from https://csdms.colorado.edu/mediawiki/images/CICE_documentation_and_software_user’s_manual.pdf]

  • Jahn, A., and Coauthors, 2012: Late-twentieth-century simulation of arctic sea ice and ocean properties in the CCSM4. J. Climate, 25, 1431–1452, https://doi.org/10.1175/JJCL-D-11-00201.1.

    Google Scholar 

  • Jin, X. Z., X. H. Zhang, and T. J. Zhou, 1999: Fundamental framework and experiments of the third generation of IAP/LASG world ocean general circulation model. Adv. Atmos. Sci., 16, 197–217, https://doi.org/10.1007/BF02973082.

    Google Scholar 

  • Johns, T. C., and Coauthors, 2006: The new hadley centre climate model (HadGEM1): Evaluation of coupled simulations. J. Climate, 19, 1327–1373, https://doi.org/10.1175/JCLI3712.1.

    Google Scholar 

  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 3, M03001, https://doi.org/10.1029/2011MS00045.

    Google Scholar 

  • Li, J.-X., Q. Bao, Y.-M. Liu, and G.-X. Wu, 2017a: Evaluation of the computational performance of the finite-volume atmospheric model of the IAP/LASG (FAMIL) on a high-performance computer. Atmospheric and Oceanic Science Letters, 10, 329–336, https://doi.org/10.1080/16742832.2017.1331111.

    Google Scholar 

  • Li, J. X., Q. Bao, Y. M. Liu, G. X. Wu, L. Wang, B. He, X. C. Wang, and J. D. Li, 2019: Evaluation of FAMIL2 in simulating the climatology and seasonal-to-interannual variability of tropical cyclone characteristics. Journal of Advances in Modeling Earth Systems, 11, 1117–1136, https://doi.org/10.1029/2018MS001506.

    Google Scholar 

  • Li, X. L., Y. Q. Yu, H. L. Liu, and P. F. Lin, 2017b: Sensitivity of Atlantic meridional overturning circulation to the dynamical framework in an ocean general circulation model. J. Meteor. Res., 31, 490–701, https://doi.org/10.1007/s13371-017-6109-3.

    Google Scholar 

  • Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013: Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2. Adv. Atmos. Sci., 30, 177–192, https://doi.org/10.1007/s00376-012-2042-7.

    Google Scholar 

  • Lin, P. F., and Coauthors, 2020: LICOM model datasets for the CMIP6 ocean model intercomparison project. Adv. Atmos. Sci., 37, 239–249, https://doi.org/10.1007/s00376-019-9208-5.

    Google Scholar 

  • Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26, 318–329, https://doi.org/10.1007/s13371-012-0307-y.

    Google Scholar 

  • Liu, H. L., X. H. Zhang, W. Li, Y. Q. Yu, and R. C. Yu, 2004: An eddy-permitting oceanic general circulation model and its preliminary evaluation. Adv. Atmos. Sci., 21, 677, https://doi.org/10.1007/BF02916365.

    Google Scholar 

  • Liu, W., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. J. Climate, 28, 931–971, https://doi.org/10.1177/JCLI-D-14-00007.1.

    Google Scholar 

  • Locarnini, R. A., and Coauthors, 2019: Temperature. Vol. 1, World Ocean Atlas 2018. NOAA Atlas NESDIS 81, 72 pp.

  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 2770–2762, https://doi.org/10.1175/JPO3130.1.

    Google Scholar 

  • Matthes, K., and Coauthors, 2017: Solar forcing for CMIP6 (v3.2). Geoscientific Model Development, 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017.

    Google Scholar 

  • Smeed, D., G. McCarthy, D. Rayner, B. I. Moat, W. E. Johns, M. O. Baringer, and C. S. Meinen, 2016: Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heat-flux Array-Western Boundary Time Series) array at 26N from 2004 to 2017. [Available online from http://nora.nerc.ac.uk/id/eprint/511950/].

  • St Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2016, https://doi.org/10.1029/2002GL015633.

    Google Scholar 

  • Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Taschetto, A. S., A. S. Gupta, N. C. Jourdain, A. Santoso, C. C. Ummenhofer, and M. H. England, 2014: Cold tongue and warm pool ENSO Events in CMIP7: Mean state and future projections. J. Climate, 27, 2861–2887, https://doi.org/10.1175/JCLI-D-13-00437.1.

    Google Scholar 

  • Wang, C. Z., L. P. Zhang, S.-K. Lee, L. X. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP7 climate model biases. Nature Climate Change, 4, 201–205, https://doi.org/10.1038/nclimate2118.

    Google Scholar 

  • Wu, F. H., H. L. Liu, W. Li, and X. H. Zhang, 2007: Effects of adjusting vertical resolution on the eastern equatorial Pacific cold tongue. Acta Oceanologica Sinica, 24, 16–27.

    Google Scholar 

  • Xiao, C., 2006: Adoption of a two-step shape-preserving advection scheme in an OGCM and its coupled experiment. M.S. thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, 89 pp. (in Chinese)

  • Yu, L. S., X. Z. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Technical Report (OA-2008-01), 64 pp.

  • Yu, Y. Q., R. C. Yu, X. H. Zhang, and H. L. Liu, 2002: A flexible coupled ocean-atmosphere general circulation model. Adv. Atmos. Sci., 99, 169–190, https://doi.org/10.1007/s00376-002-0042-8.

    Google Scholar 

  • Yu, Y. Q., X. H. Zhang, and Y. F. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444, https://doi.org/10.1007/BF02917771.

    Google Scholar 

  • Yu, Y. Q., W. P. Zheng, B. Wang, H. L. Liu, and J. P. Liu, 2011: Versions g1.0 and g1.1 of the LASG/IAP flexible global ocean-atmosphere-land system model. Adv. Atmos. Sci., 28, 99–117, https://doi.org/10.1007/s00376-010-9112-5.

    Google Scholar 

  • Yu, Y. Q., H. L. Liu, and P. F. Lin, 2012: A quasi-global 1/10° eddy-resolving ocean general circulation model and its preliminary results. Chinese Science Bulletin, 57, 3908–3916, https://doi.org/10.1007/s11434-012-7234-8.

    Google Scholar 

  • Yu, Y. Q., S. L. Tang, H. L. Liu, P. F. Lin, and X. L. LI, 2018: Development and evaluation of the dynamic framework of an ocean general circulation model with arbitrary orthogonal curvilinear coordinate. Chinese Journal of Atmospheric Sciences, 42, 877–889, https://doi.org/10.3878/j.issn.1006-9895.1807.17284. (in Chinese with English abstract)

    Google Scholar 

  • Zhang, X. H., and X. Z. Liang, 1989: A numerical world ocean general circulation model. Adv. Atmos. Sci., 6, 44–61, https://doi.org/10.1007/BF02676917.

    Google Scholar 

  • Zhang, X. H., N. Bao, R. C. Yu, and W. Q. Wang, 1992: Coupling scheme experiments based on an atmospheric and an oceanic GCM. Chinese Journal Atmospheric Sciences, 16, 129–144. (in Chinese with English abstract)

    Google Scholar 

  • Zweng, M. M., and Coauthors, 2019: Salinity. Vol. 2, World Ocean Atlas 2018. NOAA Atlas NESDIS 82, 70 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Yu.

Additional information

Article Highlights

• The CMIP6 historical simulation of oceanic circulation and sea ice by FGOALS-f3-L is evaluated and compared with the latest observed data.

• The improvements of FGOALS-f3-L compared to the previous version, FGOALS-s2, are highlighted.

• FGOALS-f3-L is able to reproduce the historical climate well, with some biases, and shows remarkable improvements.

Aknowledgements

This study was jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA19060102 and XDB42000000) and the National Natural Science Foundation of China (Grant Nos. 41530426, 91958201, and 41931183).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Yu, Y., Lin, P. et al. Simulation and Improvements of Oceanic Circulation and Sea Ice by the Coupled Climate System Model FGOALS-f3-L. Adv. Atmos. Sci. 37, 1133–1148 (2020). https://doi.org/10.1007/s00376-020-0006-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-020-0006-x

Key words

关键词

Navigation