Skip to main content

Reducing Uncertainties in Climate Projections with Emergent Constraints: Concepts, Examples and Prospects

Abstract

Models disagree on a significant number of responses to climate change, such as climate feedback, regional changes, or the strength of equilibrium climate sensitivity. Emergent constraints aim to reduce these uncertainties by finding links between the inter-model spread in an observable predictor and climate projections. In this paper, the concepts underlying this framework are recalled with an emphasis on the statistical inference used for narrowing uncertainties, and a review of emergent constraints found in the last two decades. Potential links between highlighted predictors are explored, especially those targeting uncertainty reductions in climate sensitivity, cloud feedback, and changes of the hydrological cycle. Yet the disagreement across emergent constraints suggests that the spread in climate sensitivity can not be significantly narrowed. This calls for weighting the realism of emergent constraints by quantifying the level of physical understanding explaining the relationship. This would also permit more efficient model evaluation and better targeted model development. In the context of the upcoming CMIP6 model intercomparison a growing number of new predictors and uncertainty reductions is expected, which call for robust statistical inferences that allow cross-validation of more likely estimates.

摘要

很多模式在对气候变化的很多响应上存在分歧,如气候反馈、区域变化、气候平衡态敏感性的强度等。观测涌现约束方法(以下称为“涌现约束”)是找到关于预报因子的多模式间预报离散性和气候预测的关系,来减少模式间预报的不确定性。本文回顾了在涌现约束这个框架下的一些基本概念,强调了用于缩小不确定性的统计推断,此外文章还对过去二十年间关于涌现约束的研究做了回顾。本文探索了重要因子之间的潜在联系,尤其是尝试缩小气候敏感度、云反馈和水循环的变化的不确定性。但涌现约束结果的不统一表明目前的方法还不能显著地缩小气候敏感度的不确定性范围。这要求通过对这个关系的物理理解的水平进行量化来加强涌现约束真实性。这可能也需要更有效率的模式评估和更有针对性地发展模式。在即将到来的CMIP6模式间比较中,我们希望看到更多的预报因子并且希望预报不确定性能缩小,这需要可靠的统计推断,以便对更有可能的估计进行交叉验证。

References

  1. Adam, O., T. Schneider, F. Brient, and T. Bischoff, 2016: Relation of the double-ITCZ bias to the atmospheric energy budget in climate models. Geophys. Res. Lett, 4314, 7670–7677, https://doi.org/10.1002/2016GL069465.

    Google Scholar 

  2. Adam, O., T. Schneider, and F. Brient, 2017: Regional and seasonal variations of the double-ITCZ bias in CMIP5 models. Climate Dyn., 51, 101–117, https://doi.org/10.1007/s00382017-3909-1.

    Google Scholar 

  3. Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224–231, https://doi.org/10.1038/nature01092.

    Google Scholar 

  4. Andrews, T., and Coauthors, 2018: Accounting for changing temperature patterns increases historical estimates of climate sensitivity. Geophys. Res. Lett., 45(16), 8490–8499, https://doi.org/10.1029/2018GL078887.

    Google Scholar 

  5. Betts, A. K., and Harshvardhan, 1987: Thermodynamic constraint on the cloud liquid water feedback in climate models. J. Geophys. Res., 92, 8483–8485, https://doi.org/10.1029/JD092iD07p08483.

    Google Scholar 

  6. Boé, J., A. Hall, and X. Qu, 2009: September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nature Geoscience, 2(5), 341–343, https://doi.org/10.1038/ngeo467.

    Google Scholar 

  7. Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19(15), 3445–3482, https://doi.org/10.1175/JCLI3819.1.

    Google Scholar 

  8. Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nature Geoscience, 6(6), 447–451, https://doi.org/10.1038/ngeo1799.

    Google Scholar 

  9. Bony, S., B. Stevens, D. Coppin, T. Becker, K. A. Reed, A. Voigt, and B. Medeiros, 2016: Thermodynamic control of anvil cloud amount. Proceedings of the National Academy of Sciences of the United States of America, 113(32), 8927–8932, https://doi.org/10.1073/pnas.1601472113.

    Google Scholar 

  10. Borodina, A., E. M. Fischer, and R. Knutti, 2017: Models are likely to underestimate increase in heavy rainfall in the ex-tratropical regions with high rainfall intensity. Geophys. Res. Lett., 44(14), 7401–7409, https://doi.org/10.1002/2017GL074530.

    Google Scholar 

  11. Bracegirdle, T. J., and D. B. Stephenson, 2013: On the robustness of emergent constraints used in multimodel climate change projections of arctic warming. J. Climate, 26(2), 669–678, https://doi.org/10.1175/JCLI-D-12-00537.1.

    Google Scholar 

  12. Brient, F., and S. Bony, 2013: Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Climate Dyn., 40(9-10), 2415–2431, https://doi.org/10.1007/s00382-011-1279-7.

    Google Scholar 

  13. Brient, F., and T. Schneider, 2016: Constraints on climate sensitivity from space-based measurements of low-cloud reflection. J. Climate, 29(16), 5821–5835, https://doi.org/10.1175/JCLI-D-15-0897.1.

    Google Scholar 

  14. Brient, F., T. Schneider, Z. H. Tan, S. Bony, X. Qu, and A. Hall, 2016: Shallowness of tropical low clouds as a predictor of climate models’ response to warming. Climate Dyn., 47, 433–449, https://doi.org/10.1007/s00382-015-2846-0.

    Google Scholar 

  15. Burnham, K. P., and D. R. Anderson, 2003: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd ed. Springer.

    Google Scholar 

  16. Caldwell, P. M., C. S. Bretherton, M. D. Zelinka, S. A. Klein, B. D. Santer, and B. M. Sanderson, 2014: Statistical significance of climate sensitivity predictors obtained by data mining. Geophys. Res. Lett., 41(5), 1803–1808, https://doi.org/10.1002/2014GL059205.

    Google Scholar 

  17. Caldwell, P. M., M. D. Zelinka, and S. A. Klein, 2018: Evaluating emergent constraints on equilibrium climate sensitivity. J. Climate, 31(10), 3921–3942, https://doi.org/10.1175/JCLI-D-17-0631.1.

    Google Scholar 

  18. Ceppi, P., and J. M. Gregory, 2017: Relationship of tropospheric stability to climate sensitivity and earth’s observed radiation budget. Proceedings of the National Academy of Sciences of the United States of America, 114(50), 13126–13131, https://doi.org/10.1073/pnas.1714308114.

    Google Scholar 

  19. Ceppi, P., F. Brient, M. D. Zelinka, and D. L. Hartmann, 2017: Cloud feedback mechanisms and their representation in global climate models. WIREs Climate Change, 8(4), e465, https://doi.org/10.1002/wcc.465.

    Google Scholar 

  20. Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16601–16615, https://doi.org/10.1029/JD095iD10p16601.

    Google Scholar 

  21. Cess, R. D., and Coauthors, 1996: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res., 101, 12791–12794, https://doi.org/10.1029/96JD00822.

    Google Scholar 

  22. Charney, J. G., and Coauthors, 1979: Carbon Dioxide and Climate: A Scientific Assessment. The National Academies Press, 33 pp.

    Google Scholar 

  23. Christensen, J. H., K. K. Kanikicharla, G. Marshall, and J. Turner, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T.F. Stocker et al., Eds., Cambridge University Press.

    Google Scholar 

  24. Covey, C., and Coauthors, 2000: The seasonal cycle in coupled ocean-atmosphere general circulation models. Climate Dyn., 16(10-11), 775–787, https://doi.org/10.1007/s003820000081.

    Google Scholar 

  25. Cox, P. M., D. Pearson, B. B. Booth, P. Friedlingstein, C. Hunting-ford, C. D. Jones, and C. M. Luke, 2013: Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494(7437), 341–344, https://doi.org/10.1038/nature11882.

    Google Scholar 

  26. Cox, P. M., C. Huntingford, and M. S. Williamson, 2018: Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature, 553(7688), 319–322, https://doi.org/10.1038/nature25450.

    Google Scholar 

  27. DeAngelis, A. M., X. Qu, M. D. Zelinka, and A. Hall, 2015: An observational radiative constraint on hydrologic cycle intensification. Nature, 528(7581), 249–253, https://doi.org/10.1038/nature15770.

    Google Scholar 

  28. Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc., 137(656), 553–597, https://doi.org/10.1002/qj.828.

    Google Scholar 

  29. Donat, M. G., A. J. Pitman, and O. Angélil, 2018: Understanding and reducing future uncertainty in midlatitude daily heat extremes via land surface feedback constraints. Geophys. Res. Lett., 45(19), 10627–10636, https://doi.org/10.1029/2018GL079128.

    Google Scholar 

  30. Douville, H., and M. Plazzotta, 2017: Midlatitude summer drying: An underestimated threat in CMIP5 models? Geophys. Res. Lett., 44(19), 9967–9975, https://doi.org/10.1002/2017GL075353.

    Google Scholar 

  31. Dufresne, J.-L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere-ocean models. J. Climate, 21(19), 5135–5144, https://doi.org/10.1175/2008JCLI2239.1.

    Google Scholar 

  32. Eyring, V., and Coauthors, 2019: Taking climate model evaluation to the next level. Nat. Clim. Change, 9(2), 102–110, https://doi.org/10.1038/s41558-018-0355-y.

    Google Scholar 

  33. Fasullo, J. T., and K. E. Trenberth, 2012: A less cloudy future: The role of subtropical subsidence in climate sensitivity. Science, 338(6108), 792–794, https://doi.org/10.1126/science.12.2.7465.

    Google Scholar 

  34. Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 741–

    Google Scholar 

  35. Găinuşă-Bogdan, A., P. Braconnot, and J. Servonnat, 2015: Using an ensemble data set of turbulent air-sea fluxes to evaluate the IPSL climate model in tropical regions. J. Geophys. Res., 120(10), 4483–4505, https://doi.org/10.1002/2014JD022985.

    Google Scholar 

  36. Gao, Y., J. Lu, and L. R. Leung, 2016: Uncertainties in projecting future changes in atmospheric rivers and their impacts on heavy precipitation over Europe. J. Climate, 29(18), 6711–6726, https://doi.org/10.1175/JCLI-D-16-0088.1.

    Google Scholar 

  37. Geoffroy, O., S. C. Sherwood, and D. Fuchs, 2017: On the role of the stratiform cloud scheme in the inter-model spread of cloud feedback. Journal of Advances in Modeling Earth Systems, 9(1), 423–437, https://doi.org/10.1002/2016MS000846.

    Google Scholar 

  38. Gordon, N. D., and S. A. Klein, 2014: Low-cloud optical depth feedback in climate models. J. Geophys. Res., 119(10), 6052–6065, https://doi.org/10.1002/2013JD021052.

    Google Scholar 

  39. Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31(3), L03205, https://doi.org/10.1029/2003GL018747.

    Google Scholar 

  40. Hall, A., and S. Manabe, 1999: The role of water vapor feedback in unperturbed climate variability and global warming. J. Climate, 12, 2327–2346, https://doi.org/10.1175/15200442(1999)012<2327:TROWVF>2.0.CO;2.

    Google Scholar 

  41. Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33, L03502, https://doi.org/10.1029/2005GL025127.

    Google Scholar 

  42. Hall, A., P. Cox, C. Huntingford, and S. Klein, 2019: Progressing emergent constraints on future climate change. Nat. Clim. Change, 9(4), 269–278, https://doi.org/10.1038/s41558-019-0436-6.

    Google Scholar 

  43. Hargreaves, J. C., J. D. Annan, M. Yoshimori, and A. Abe-Ouchi, 2012: Can the last glacial maximum constrain climate sensitivity? Geophys. Res. Lett., 39(24), L24702, https://doi.org/10.1029/2012GL053872

    Google Scholar 

  44. Harrison, S. P., P. J. Bartlein, K. Izumi, G. Li, J. Annan, J. Hargreaves, P. Braconnot, and M. Kageyama, 2015: Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Clim. Change, 5(8), 735–743, https://doi.org/10.1038/nclimate2649.

    Google Scholar 

  45. Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud-climate feedback. Geophys. Res. Lett., 29, 12–1, https://doi.org/10.1029/2002GL015835.

    Google Scholar 

  46. Hoffman, F. M., and Coauthors, 2014: Causes and implications of persistent atmospheric carbon dioxide biases in earth system models. J. Geophys. Res., 119(2), 141–162, https://doi.org/10.1002/2013JG002381.

    Google Scholar 

  47. Huber, M., I. Mahlstein, M. Wild, J. Fasullo, and R. Knutti, 2011: Constraints on climate sensitivity from radiation patterns in climate models. J. Climate, 24(4), 1034–1052, https://doi.org/10.1175/2010JCLI3403.1.

    Google Scholar 

  48. Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the southern ocean. Proceedings of the National Academy of Sciences of the United States of America, 110(13), 4935–4940, https://doi.org/10.1073/pnas.1213302110.

    Google Scholar 

  49. Kamae, Y., H. Shiogama, M. Watanabe, T. Ogura, T. Yokohata, and M. Kimoto, 2016: Lower-tropospheric mixing as a constraint on cloud feedback in a multiparameter multiphysics ensemble. J. Climate, 29(17), 6259–6275, https://doi.org/10.1175/JCLI-D-16-0042.1.

    Google Scholar 

  50. Kidston, J., and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37(9), L09708, https://doi.org/10.1029/2010GL042873.

    Google Scholar 

  51. Klein, S. A., and A. Hall, 2015: Emergent constraints for cloud feedbacks. Current Climate Change Reports, 1(4), 276–287, https://doi.org/10.1007/s40641-015-0027-1.

    Google Scholar 

  52. Knutti, R., D. Masson, and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40(6), 1194–1199, https://doi.org/10.1002/grl.50256.

    Google Scholar 

  53. Kwiatkowski, L., L. Bopp, O. Aumont, P. Ciais, P. M. Cox, C. Laufkötter, Y. Li, and R. Séférian, 2017: Emergent constraints on projections of declining primary production in the tropical oceans. Nat. Clim. Change, 7(5), 355–358, https://doi.org/10.1038/nclimate3265

    Google Scholar 

  54. Li, G., S.-P. Xie, C. He, and Z. S. Chen, 2017: Western pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat. Clim. Change, 7(10), 708–712, https://doi.org/10.1038/nclimate3387.

    Google Scholar 

  55. Lin, Y. L., W. H. Dong, M. H. Zhang, Y. Y. Xie, W. Xue, J. B. Huang, and Y. Luo, 2017: Causes of model dry and warm bias over central U. S. and impact on climate projections. Nature Communications, 8(1), 881, https://doi.org/10.1038/s41467-017-01040-2.

    Google Scholar 

  56. Lipat, B. R., G. Tselioudis, K. M. Grise, and L. M. Polvani, 2017: CMIP5 models’ shortwave cloud radiative response and climate sensitivity linked to the climatological Hadley cell extent. Geophys. Res. Lett., 44(11), 5739–5748, https://doi.org/10.1002/2017GL073151.

    Google Scholar 

  57. Masson, D., and R. Knutti, 2011: Climate model genealogy. Geophys. Res. Lett., 38(8), L08703, https://doi.org/10.1029/2011GL046864.

    Google Scholar 

  58. Massonnet, F., T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P.-Y. Barriat, 2012: Constraining projections of summer arctic sea ice. The Cryosphere, 6(6), 1383–1394, https://doi.org/10.5194/tc-6-1383-2012.

    Google Scholar 

  59. McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor, 2015: Mixed-phase cloud physics and southern ocean cloud feedback in climate models. J. Geophys. Res., 120(18), 9539–9554, https://doi.org/10.1002/2015JD023603.

    Google Scholar 

  60. Meehl, G. A., G. J. Boer, C. J. Covey, M. Latif, and R. J. Stouffer, 2000: The coupled model intercomparison project (CMIP). Bull. Amer. Meteorol. Soc., 81, 313–318, https://doi.org/10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2.

    Google Scholar 

  61. Mitchell, J. F. B., C. A. Senior, and W. J. Ingram, 1989: CO2 and climate: A missing feedback? Nature, 341(6238), 132–134, https://doi.org/10.1038/341132a0.

    Google Scholar 

  62. Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117(D8), D08101, https://doi.org/10.1029/2011JD017187.

    Google Scholar 

  63. Myers, T. A., and J. R. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26(19), 7507–7524, https://doi.org/10.1175/JCLI-D-12-00736.1.

    Google Scholar 

  64. Myers, T. A., and J. R. Norris, 2015: On the relationships between subtropical clouds and meteorology in observations and CMIP3 and CMIP5 models. J. Climate, 28(8), 2945–2967, https://doi.org/10.1175/JCLI-D-14-00475.1.

    Google Scholar 

  65. O’Gorman, P. A., 2012: Sensitivity of tropical precipitation extremes to climate change. Nature Geoscience, 5(10), 697–700, https://doi.org/10.1038/ngeo1568.

    Google Scholar 

  66. O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21(15), 3815–3832, https://doi.org/10.1175/2007JCLI2065.1.

    Google Scholar 

  67. Plazzotta, M., R. Séférian, H. Douville, B. Kravitz, and J. Tjiputra, 2018: Land surface cooling induced by sulfate geoengineering constrained by major volcanic eruptions. Geophys, Res, Lett., 45, 5663–5671, https://doi.org/10.1029/2018GL077583.

    Google Scholar 

  68. Qu, X., and A. Hall, 2014: On the persistent spread in snow-albedo feedback. Climate Dyn., 42(1-2), 69–81, https://doi.org/10.1007/s00382-013-1774-0.

    Google Scholar 

  69. Qu, X., A. Hall, S. A. Klein, and P. M. Caldwell, 2014: On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate Dyn., 42, 2603–2626, https://doi.org/10.1007/s00382-013-1945-z.

    Google Scholar 

  70. Qu, X., A. Hall, S. A. Klein, and A. M. DeAngelis, 2015: Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors. Geophys. Res. Lett., 42(18), 7767–7775, https://doi.org/10.1002/2015GL065627.

    Google Scholar 

  71. Qu, X., A. Hall, A. M. DeAngelis, M. D. Zelinka, S. A. Klein, H. Su, B. J. Tian, and C. X. Zhai, 2018: On the emergent constraints of climate sensitivity. J. Climate, 31(2), 863–875, https://doi.org/10.1175/JCLI-D-17-0482.1.

    Google Scholar 

  72. Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteorol. Soc., 80, 2261–2287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    Google Scholar 

  73. Sanderson, B. M., R. Knutti, and P. Caldwell, 2015: A representative democracy to reduce interdependency in a multimodel ensemble. J. Climate, 28(13), 5171–5194, https://doi.org/10.1175/JCLI-D-14-00362.1.

    Google Scholar 

  74. Schmidt, G. A., and Coauthors, 2013: Using palaeo-climate comparisons to constrain future projections in CMIP5. Climate of the Past, 10(1), 221–250, https://doi.org/10.5194/cp-10-221-2014.

    Google Scholar 

  75. Schneider, T., 2018: Statistical inference with emergent constraints. [Available from https://climate-dynamics.org/statistical-inference-with-emergent-constraints/.]

  76. Seneviratne, S. I., M. G. Donat, A. J. Pitman, R. Knutti, and R. L. Wilby, 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529(7587), 477–483, https://doi.org/10.1038/nature16542.

    Google Scholar 

  77. Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505(7481), 37–42, https://doi.org/10.1038/nature12829.

    Google Scholar 

  78. Siler, N., S. Po-Chedley, and C. S. Bretherton, 2018: Variability in modeled cloud feedback tied to differences in the climatological spatial pattern of clouds. Climate Dyn., 50(3-4), 1209–1220, https://doi.org/10.1007/s00382-017-3673-2.

    Google Scholar 

  79. Simpson, I. R., and L. M. Polvani, 2016: Revisiting the relationship between jet position, forced response, and annular mode variability in the southern midlatitudes. Geophys. Res. Lett., 43(6), 2896–2903, https://doi.org/10.1002/2016GL067989.

    Google Scholar 

  80. Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1585 pp.

    Google Scholar 

  81. Su, H., J. H. Jiang, C. X. Zhai, T. J. Shen, J. D. Neelin, G. L. Stephens, and Y. L. Yung, 2014: Weakening and strengthening structures in the hadley circulation change under global warming and implications for cloud response and climate sensitivity. J. Geophys. Res., 119(10), 5787–5805, https://doi.org/10.1002/2014JD021642.

    Google Scholar 

  82. Tan, I., T. Storelvmo, and M. D. Zelinka, 2016: Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science, 352(6282), 224–227, https://doi.org/10.1126/science.aad5300

    Google Scholar 

  83. Thackeray, C. W., X. Qu, and A. Hall, 2018: Why do models produce spread in snow albedo feedback? Geophys. Res. Lett., 45(12), 6223–6231, https://doi.org/10.1029/2018GL078493

    Google Scholar 

  84. Tian, B. J., 2015: Spread of model climate sensitivity linked to double-intertropical convergence zone bias. Geophys. Res. Lett., 42(10), 4133–4141, https://doi.org/10.1002/2015GL064119.

    Google Scholar 

  85. Trenberth, K. E., and A. G. Dai, 2007: Effects of mount pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett., 34(15), L15702, https://doi.org/10.1029/2007GL030524

    Google Scholar 

  86. Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23(2), 440–454, https://doi.org/10.1175/2009JCLI3152.1.

    Google Scholar 

  87. Volodin, E. M., 2008: Relation between temperature sensitivity to doubled carbon dioxide and the distribution of clouds in current climate models. Izvestiya, Atmospheric and Oceanic Physics, 44(3), 288–299, https://doi.org/10.1134/S0001433808030043.

    Google Scholar 

  88. Wagman, B. M., and C. S. Jackson, 2018: A test of emergent constraints on cloud feedback and climate sensitivity using a calibrated single-model ensemble. J. Climate, 31(18), 7515–7532, https://doi.org/10.1175/JCLI-D-17-0682.1.

    Google Scholar 

  89. Wang, J., N. Zeng, Y. M. Liu, and Q. Bao, 2014: To what extent can interannual CO2 variability constrain carbon cycle sensitivity to climate change in CMIP5 earth system models? Geophys. Res. Lett., 41(10), 3535–3544, https://doi.org/10.1002/2014GL060004.

    Google Scholar 

  90. Watanabe, M., Y. Kamae, H. Shiogama, A. M. DeAngelis, and K. Suzuki, 2018: Low clouds link equilibrium climate sensitivity to hydrological sensitivity. Nat. Clim. Change, 8(10), 901–906, https://doi.org/10.1038/s41558-018-0272-0.

    Google Scholar 

  91. Webb, M. J., and Coauthors, 2015: The impact of parametrized convection on cloud feedback. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2054), 20140414, https://doi.org/10.1098/rsta.2014.0414.

    Google Scholar 

  92. Wenzel, S., P. M. Cox, V. Eyring, and P. Friedlingstein, 2014: Emergent constraints on climate-carbon cycle feedbacks in the CMIP5 earth system models. J. Geophys. Res., 119(5), 794–807, https://doi.org/10.1002/2013JG002591.

    Google Scholar 

  93. Wenzel, S., P. M. Cox, V. Eyring, and P. Friedlingstein, 2016: Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature, 538(7626), 499–501, https://doi.org/10.1038/nature19772.

    Google Scholar 

  94. Winker, D. W., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor-ol. Soc., 91(9), 1211–1229, https://doi.org/10.1175/2010BAMS3009.1.

    Google Scholar 

  95. Winkler, A. J., R. B. Myneni, G. A. Alexandrov, and V. Brovkin, 2019: Earth system models underestimate carbon fixation by plants in the high latitudes. Nature Communications, 10(1), 885, https://doi.org/10.1038/s41467-019-08633-z.

    Google Scholar 

  96. Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate, 26(14), 5007–5027, https://doi.org/10.1175/JCLI-D-12-00555.1.

    Google Scholar 

  97. Zhai, C. X., J. H. Jiang, and H. Su, 2015: Long-term cloud change imprinted in seasonal cloud variation: More evidence of high climate sensitivity. Geophys. Res. Lett., 42(20), 8729–8737, https://doi.org/10.1002/2015GL065911.

    Google Scholar 

  98. Zhou, C., M. D. Zelinka, A. E. Dessler, and S. A. Klein, 2015: The relationship between interannual and long-term cloud feedbacks. Geophys. Res. Lett., 42(23), 10463–10469, https://doi.org/10.1002/2015GL066698.

    Google Scholar 

  99. Zhou, C., M. D. Zelinka, and S. A. Klein, 2016: Impact of decadal cloud variations on the earth’s energy budget. Nature Geoscience, 9(12), 871–874, https://doi.org/10.1038/ngeo2828.

    Google Scholar 

Download references

Acknowledgements

This work received funding from the Agence Nationale de la Recherche (ANR) [grant HIGH-TUNE ANR-16-CE01-0010]. I thank Tapio SCHNEIDER for the numerous discussions we had on this topic, and for sharing his thoughts on statistical inference. I also thank Ross DIXON for interesting discussions and for proofreading the manuscript. Finally, I thank the two anonymous reviewers for their insightful comments on the manuscript. Routines for the randomly generated relationship and the statistical inferences are available on the Github website (https://github.com/florentbrient/emergent_constraint/).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Florent Brient.

Additional information

Article Highlights

• Emergent constraints aim to reduce uncertainties in inter-model climate projections by relating them to observational predictors.

• Tens of constraints that provide best estimates for several climate change signals have already been found, with various level of credibility.

• Emergent constraints for equilibrium climate sensitivity so far suggest a slight shift towards high values, without narrowing the spread.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brient, F. Reducing Uncertainties in Climate Projections with Emergent Constraints: Concepts, Examples and Prospects. Adv. Atmos. Sci. 37, 1–15 (2020). https://doi.org/10.1007/s00376-019-9140-8

Download citation

Keywords

  • climate modeling
  • emergent constraint
  • climate change
  • climate sensitivity

关键词

  • 气候模式
  • 观测涌现约束
  • 气候变化
  • 气候敏感性