Aitken, M. L., B. Kosović, J. D. Mirocha, and J. K. Lundquist, 2014: Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting Model. Journal of Renewable and Sustainable Energy, 6, 033137, https://doi.org/10.1063/1.4885111.
Google Scholar
Alexandru, A., R. de Elia, R. Laprise, L. Separovic, and S. Biner, 2009: Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon. Wea. Rev., 137, 1666–1686, https://doi.org/10.1175/2008MWR2620.1.
Google Scholar
Anderson, T. W., 1962: On the distribution of the two-sample cramervon mises criterion. The Annals of Mathematical Statistics, 33, 1148–1159, https://doi.org/10.1214/aoms/1177704477.
Google Scholar
Barlage, M., F. Chen, and D. Bromwhich, 2008: Noah Land Surface Model Soil Depth Modifications for Arctic Regional Climate Simulations. American Geophysical Union Fall Meeting 2008, San Francisco, CA, American Geophysical Union. [Available online from https://ral.ucar.edu/~barlage/ASR/presentations/Barlage_AGU_Poster_12Dec08.pdf.]
Google Scholar
Bastin, S., M. Chiriaco, and P. Drobinski, 2018: Control of radiation and evaporation on temperature variability in a WRF regional climate simulation: Comparison with colocated long term ground based observations near Paris. Climate Dyn., 51, 985–1003, https://doi.org/10.1007/s00382-016-2974-1.
Google Scholar
Bechler, A., M. Vrac, and L. Bel, 2015: A spatial hybrid approach for downscaling of extreme precipitation fields. J. Geo-phys. Res., 120, 4534–4550, https://doi.org/10.1002/2014JD022558.
Google Scholar
Bowden, J. H., T. L. Otte, C. G. Nolte, and M. J. Otte, 2012: Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling. J. Climate, 25, 2805–2823, https://doi.org/10.1175/JCLI-D-11-00167.1.
Google Scholar
Bowden, J. H., C. G. Nolte, and T. L. Otte, 2013: Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology. Climate Dyn., 40, 1903–1920, https://doi.org/10.1007/s00382-012-1440-y.
Google Scholar
Bruyère, C. L., J. M. Done, G. J. Holland, and S. Fredrick, 2014: Bias corrections of global models for regional climate simulations of high-impact weather. Climate Dyn., 43, 1847–1856, https://doi.org/10.1007/s00382-013-2011-6.
Google Scholar
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
Google Scholar
Colette, A., R. Vautard, and M. Vrac, 2012: Regional climate downscaling with prior statistical correction of the global climate forcing. Geophys. Res. Lett., 39, L13707, https://doi.org/10.1029/2012GL052258.
Google Scholar
Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19, 2122–2143, https://doi.org/10.1175/JCLI3761.1.
Google Scholar
Cramer, H., 1928: On the composition of elementary errors. Scandinavian Actuarial Journal, 1928, 141–180, https://doi.org/10.1080/03461238.1928.10416872.
Google Scholar
Davis, N., A. N. Hahmann, N.-L. Clausen, and M. Žagar, 2014: Forecast of icing events at a wind farm in Sweden. Journal of Applied Meteorology and Climatology, 53, 262–281, https://doi.org/10.1175/JAMC-D-13-09.1.
Google Scholar
D’Agostino, R. B., and M. A. Stephens, 1986: Goodness-of-Fit-Techniques. Marcel Dekker, Inc.
Google Scholar
Dehling, H., and W. Philipp, 2002: Empirical process techniques for dependent data. Empirical Process Techniques for Dependent Data, H. G. Dehling, T. Mikosch, and M. Sørensen, Eds., iBirkhäuser, 3-113, https://doi.org/10.1007/978-1-4612-0099-4_1.
Google Scholar
Déqué, M., 2007: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global and Planetary Change, 57, 16–26, https://doi.org/10.1016/j.gloplacha.2006.11.030.
Google Scholar
Diaz-Nieto, J., and R. L. Wilby, 2005: A comparison of statistical downscaling and climate change factor methods: Impacts on low flows in the River Thames, United Kingdom. Climatic Change, 69, 245–268, https://doi.org/10.1007/s10584-005-1157-6.
Google Scholar
Dixon, K. W., J. R. Lanzante, M. J. Nath, K. Hayhoe, A. Stoner, A. Radhakrishnan, V. Balaji, and C. F. Gaitan, 2016: Evaluating the stationarity assumption in statistically downscaled climate projections: Is past performance an indicator of future results? Climatic Change, 135, 395–408, https://doi.org/10.1007/s10584-016-1598-0.
Google Scholar
Dulière, V., Y. X. Zhang, and E. P. Salathé Jr., 2011: Extreme precipitation and temperature over the U.S. Pacific Northwest: A comparison between observations, reanalysis data, and regional models. J. Climate, 24, 1950–1964, https://doi.org/10.1175/2010JCLI3224.1.
Google Scholar
Duran, P., C. Meissner, K. Rutledge, R. Fonseca, J. Martin-Torres, and M. S. Adaramola, 2019: Meso-microscale coupling for wind resource assessment using averaged atmospheric stability conditions. Meteorol. Z., https://doi.org/10.1127/metz/2019/0937.
Google Scholar
Duynkerke, P. G., 1991: Radiation fog: A comparison of model simulation with detailed observations. Mon. Wea. Rev., 119, 321–341, https://doi.org/10.1175/1520-0493(1991)119<0324:RFACOM>2.0.CO;2.
Google Scholar
Ebisuzaki, W., and L. Zhang, 2011: Assessing the performance of the CFSR by an ensemble of analyses. Climate Dyn., 37, 2541–2550, https://doi.org/10.1007/s00382-011-1074-5.
Google Scholar
Famien, A. M., S. Janicot, A. D. Ochou, M. Vrac, D. Defrance, B. Sultan, and T. Noël, 2018: A bias-corrected CMIP5 dataset for Africa using the CDF-t method-a contribution to agricultural impact studies. Earth System Dynamics, 9, 313–338, https://doi.org/10.5194/esd-9-313-2018.
Google Scholar
Fan, K., Y. Liu, and H. P. Chen, 2012: Improving the prediction of the East Asian summer monsoon: New approaches. Wea. Forecasting, 27, 1017–1030, https://doi.org/10.1175/WAF-D-11-00092.1.
Google Scholar
Fay, M. P., and M. A. Proschan, 2010: Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys, 4, 1–39, https://doi.org/10.1214/09-SS051.
Google Scholar
Field, A. P., 2013: Discovering Statistics Using IBM SPSS Statistics: and Sex and Drugs and Rock ’N’ Roll. 4th ed. SAGE, 915 pp.
Google Scholar
Fitch, A. C., J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad, 2012: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Wea. Rev., 140, 3017–3038, https://doi.org/10.1175/MWR-D-11-00352.1.
Google Scholar
Flaounas, E., P. Drobinski, M. Vrac, S. Bastin, C. Lebeaupin-Brossier, M. Stéfanon, M. Borga, and J.-C. Calvet, 2013: Precipitation and temperature space-time variability and extremes in the Mediterranean region: Evaluation of dynamical and statistical downscaling methods. Climate Dyn., 40, 2687–2705, https://doi.org/10.1007/s00382-012-1558-y.
Google Scholar
Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 27, 1547–1578, https://doi.org/10.1002/joc.1556.
Google Scholar
Free, M., B. M. Sun, and H. L. Yoo, 2016: Comparison between total cloud cover in four reanalysis products and cloud measured by visual observations at U.S. weather stations. J. Climate, 29, 2015–2021, https://doi.org/10.1175/JCLI-D-15-0637.1.
Google Scholar
García-Díez, M., J. Fernández, L. Fita, and C. Yagüe, 2013: Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Quart. J. Roy. Meteor. Soc., 139, 501–514, https://doi.org/10.1002/qj.1976.
Google Scholar
Gray, L. J., T. J. Woollings, M. Andrews, and J. Knight, 2016: Eleven-year solar cycle signal in the NAO and Atlantic/European blocking. Quart. J. Roy. Meteor. Soc., 142, 1890–1903, https://doi.org/10.1002/qj.2782.
Google Scholar
Hanssen-Bauer, I., C. Achberger, R. E. Benestad, D. Chen, and E. J. Forland, 2005: Statistical downscaling of climate scenarios over Scandinavia. Climate Research, 29, 255–268, https://doi.org/10.3354/cr029255.
Google Scholar
Heikkilä, U., A. Sandvik, and A. Sorteberg, 2014: Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Climate Dyn., 37, 1551–1564, https://doi.org/10.1007/s00382-010-0928-6.
Google Scholar
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.
Google Scholar
Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:TS-MECM>2.0.CO;2.
Google Scholar
Jylha, K., H. Tuomenvirta, and K. Ruosteenoja, 2004: Climate change projections for Finland during the 21st century. Boreal Environment Research, 9, 127–152.
Google Scholar
Kallache, M., M. Vrac, P. Naveau, and P. A. Michelangeli, 2011: Nonstationary probabilistic downscaling of extreme precipitation. J. Geophys. Res., 116, 05113, https://doi.org/10.1029/2010JD014892.
Google Scholar
Katata, G., M. Kajino, T. Hiraki, M. Aikawa, T. Kobayashi, and H. Nagai, 2011: A method for simple and accurate estimation of fog deposition in a mountain forest using a meteorological model. J. Geophys. Res., 116, D20102, https://doi.org/10.1029/2010JD015552.
Katragkou, E., and Coauthors, 2015: Regional climate Hindcast simulations within EURO-CORDEX: Evaluation of a WRF multi-physics ensemble. Geoscientific Model Development, 8, 603–618, https://doi.org/10.5194/gmd-8-603-2015.
Google Scholar
Ke, Z. J., P. Q. Zhang, L. J. Chen, and L. M. Du, 2011: An experiment of a statistical downscaling forecast model for summer precipitation over China. Atmospheric and Oceanic Science Letters, 4, 270–275, https://doi.org/10.1080/16742834.2011.11446941.
Google Scholar
Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geoscience, 6, 433–440, https://doi.org/10.1038/NGEO2424.
Google Scholar
Kjellström, E., L. Bärring, D. Jacob, R. Jones, G. Lenderink, and C. Schär, 2007: Modelling daily temperature extremes: Recent climate and future changes over Europe. Climatic Change, 81, 249–265, https://doi.org/10.1007/s10584-006-9220-5.
Google Scholar
Koenigk, T., L. Brodeau, R. G. Graversen, J. Karlsson, G. Svensson, M. Tjernström, U. Willén, and K. Wyser, 2013: Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Climate Dyn., 40, 2719–2743, https://doi.org/10.1007/s00382-012-1505-y.
Google Scholar
Koh, T.-Y., and R. M. Fonseca, 2016: Subgrid-scale cloud-radiation feedback for the Betts-miller- Janjić convection scheme. Quart. J. Roy. Meteor. Soc., 142, 989–1006, https://doi.org/10.1002/qj.2702.
Google Scholar
Kotlarski, S., and Coauthors, 2014: Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geoscientific Model Development, 7, 1521–1333, https://doi.org/10.5194/gmd-7-1297-2014.
Google Scholar
Landman, W. A., and W. J. Tennant, 2000: Statistical downscaling of monthly forecasts. International Journal of Climatology, 20, 1521–1532, https://doi.org/10.1002/1097-0088(20001115)20:13<1521::AID-JOC558>3.0.CO;2-N.
Google Scholar
Lanzante, J. R., K. W. Dixon, M. J. Nath, C. E. Whitlock, and D. Adams-Smith, 2018: Some pitfalls in statistical downscaling of future climate. Bull. Amer. Meteor. Soc., 99, 791–803, https://doi.org/10.1175/BAMS-D-17-0046.1.
Google Scholar
Lanzante, J. R., M. J. Nath, C. E. Whitlock, K. W. Dixon, and D. Adams-Smith, 2019: Evaluation and improvement of tail behaviour in the cumulative distribution function transform down-scaling method. International Journal of Climatology, 39, 2449–2460, https://doi.org/10.1002/joc.5964.
Google Scholar
Laprise, R., 2008: Regional climate modelling. J. Comput. Phys., 227, 3641–3666, https://doi.org/10.1016/j.jcp.2006.10.024.
Google Scholar
Lavaysse, C., M. Vrac, P. Drobinski, M. Lengaigne, and T. Vischel, 2012: Statistical downscaling of the French Mediterranean climate: Assessment for present and projection in an anthropogenic scenario. Natural Hazards and Earth System Sciences, 12, 651–670, https://doi.org/10.5194/nhess-12-651-2012.
Google Scholar
Leppäranta, M., and A. Seinä, 1985: Freezing, maximum annual ice thickness and breakup of ice on the Finnish coast during 1830-1984. Geophysica, 21, 87–104.
Google Scholar
Linderson, M.-J., 2001: Objective classification of atmospheric circulation over southern Scandinavia. International Journal of Climatology, 21, 569–169, https://doi.org/10.1002/joc.604.
Google Scholar
Lo, J. C. F., Z. L. Yang, and R. A. Pielke, 2008: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) Model. Geophys. Res. Lett., 113, D09112, https://doi.org/10.1029/2007JD009216.
Ma, Y. Y., Y. Yang, X. P. Mai, C. J. Qiu, X. Long, and C. H. Wang, 2016: Comparison of analysis and spectral nudging techniques for dynamical downscaling with the WRF model over China. Advances in Meteorology, 2016, 4761513, https://doi.org/10.1155/2016/4761513.
Google Scholar
Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18, 50–60, https://doi.org/10.1214/aoms/1177730491.
Google Scholar
Merino, A., and Coauthors, 2015: Cloud top height estimation from WRF model: Application to the infrared camera onboard EUSO-Balloon (CNES). Proceedings of the. 34th International. Cosmic Ray Conf.erence, 30th July-6th August, The Hague, The Netherlands.
Google Scholar
Michelangeli, P.-A., M. Vrac, and H. Loukos, 2009: Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys. Res. Lett., 36, L11708, https://doi.org/10.1029/2009GL038401.
Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, https://doi.org/10.1029/2003JD004495.
Google Scholar
Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2005: Regional climate simulations over North America: Interaction of local processes with improved large-scale flow. J. Climate, 18, 1227–1246, https://doi.org/10.1175/JCLI3369.1.
Google Scholar
Mills, C. M., 2011: On the weather research and forecasting model’s treatment of sea ice albedo over the arctic ocean. Proc. 10th Annual School of Earth, Society, and Environmental Research Review, Urbana-Campaign, IL, University of Illinois.
Google Scholar
Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the ground layer of the atmosphere. Trans. Geophys. Inst. Akad. Nauk USSR, 151, 163–187.
Google Scholar
Nakanishi, M., 2000: Large-eddy simulation of radiation fog. Bound.-Layer Meteor., 94, 461–493, https://doi.org/10.1023/A:1002490423389.
Google Scholar
Nakanishi, M., and H. Niino, 2006: An improved Mellor-Ya-mada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397–407, https://doi.org/10.1007/s10546-005-9030-8.
Google Scholar
Neuhäuser, M., 2011: Wilcoxon-Mann-Whitney test. International Encyclopedia of Statistical Science, M. Lovric, Ed., Springer, https://doi.org/10.1007/978-3-642-04898-2_615.
Google Scholar
Nikulin, G., E. Kjellström, U. Hansson, G. Strandberg, and A. Ullerstig, 2011: Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A: Dynamic Meteorology and Oceanography, 63, 41–55, https://doi.org/10.1111/j.1600-0870.2010.00466.x.
Google Scholar
Otte, T. L., C. G. Nolte, M. J. Otte, and J. H. Bowden, 2012: Does nudging squelch the extremes in regional climate modeling? J. Climate, 25, 7046–7066, https://doi.org/10.1175/JCLI-D-12-00048.1.
Google Scholar
Overland, J. E., and Coauthors, 2016: Nonlinear response of mid-latitude weather to the Changing Arctic. Nat. Clim. Change, 6, 992–999, https://doi.org/10.1038/nclimate3121.
Google Scholar
Pan, X. D., X. Li, X. K. Shi, X. J. Han, L. H. Luo, and L. X. Wang, 2012: Dynamic downscaling of near-surface air temperature at the basin scale using WRF-a case study in the Heihe River Basin, China. Frontiers of Earth Science, 6, 314–323, https://doi.org/10.1007/s11707-012-0306-2.
Google Scholar
Pepin, N. C., M. K. Schaefer, and L. D. Riddy, 2009: Quantification of the cold-air pool in Kevo valley, Finnish Lapland. Weather, 64, 60–67, https://doi.org/10.1002/wea.260.
Google Scholar
Pierce, D. W., D. R. Cayan, E. P. Maurer, J. T. Abatzoglou, and K. C. Hegewisch, 2015: Improved bias correction techniques for hydrological simulations of climate change. Journal of Hydrometeorology, 16, 2421–2442, https://doi.org/10.1175/JHM-D-14-0236.1.
Google Scholar
Rummukainen, M., J. Räisänen, B. Bringfelt, A. Ullerstig, A. Omstedt, U. Willén, U. Hansson, and C. Jones, 2001: A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations. Climate Dyn., 17, 339–359, https://doi.org/10.1007/s003820000109.
Google Scholar
Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1.
Google Scholar
Seneviratne, S. I., M. G. Donat, B. Mueller, and L. V. Alexander, 2014: No pause in the increase of hot temperature extremes. Nat. Clim. Change, 4, 161–163, https://doi.org/10.1038/nclimate2145.
Google Scholar
Sheffield, J., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of model-simulated snow cover extent. J. Geophys. Res., 108, GCP 10, https://doi.org/10.1029/2002JD003274.
Google Scholar
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note TN-4175 STR, 113 pp, https://doi.org/10.5065/D68S4MVH.
Google Scholar
Soares, P. M. M., R. M. Cardoso, P. M. A. Miranda, J. de Medeiros, M. Belo-Pereira, and F. Espirito-Santo, 2012: WRF high resolution dynamical downscaling of ERA-interim for portugal. Climate Dyn., 39, 2497–2522, https://doi.org/10.1007/s00382-012-1315-2.
Google Scholar
Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 1250–1277, https://doi.org/10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2.
Google Scholar
Steeneveld, G.-J., 2014: Current challenges in understanding and forecasting stable boundary layers over land and ice. Frontiers in Environmental Science, 2, 41, https://doi.org/10.3389/fenvs.2014.00041.
Google Scholar
Steinhoff, D. F., D. H. Bromwich, J. C. Speirs, H. A. McGowan, and A. J. Monaghan, 2014: Austral summer foehn winds over the McMurdo dry valleys of Antarctica from Polar WRF. Quart. J. Roy. Meteor. Soc., 140, 1825–1837, https://doi.org/10.1002/qj.2278.
Google Scholar
Tegen, I., P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner, 1997: Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res., 102, 23895–23915, https://doi.org/10.1029/97JD01864.
Google Scholar
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1.
Google Scholar
Toniazzo, T., and A. A. Scaife, 2006: The influence of ENSO on winter North Atlantic climate. Geophys. Res. Lett., 33, L24704, https://doi.org/10.1029/2006GL027881.
Google Scholar
Trigo, R. M., T. J. Osborn, and J. M. Corte-Real, 2002: The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms. Climate Research, 20, 9–17, https://doi.org/10.3354/cr020009.
Google Scholar
Vigaud, N., M. Vrac, and Y. Caballero, 2013: Probabilistic down-scaling of GCM scenarios over southern India. International Journal of Climatology, 33, 1248–1263, https://doi.org/10.1002/joc.3509.
Google Scholar
von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664–3673, https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.
Google Scholar
Vrac, M., P. Drobinski, A. Merlo, M. Herrmann, C. Lavaysse, L. Li, and S. Somot, 2012: Dynamical and statistical downscal-ing of the French Mediterranean climate: uncertainty assessment. Natural Hazards and Earth System Sciences, 12, 2769–2784, https://doi.org/10.5194/nhess-12-2769-2012.
Google Scholar
Waldron, K. M., J. Paegle, and J. D. Horel, 1996: Sensitivity of a spectrally filtered and nudged limited-area model to outer model options. Mon. Wea. Rev., 124, 529–547, https://doi.org/10.1175/1520-0493(1996)124<0529:SOASFA>2.0.CO;2.
Google Scholar
Wang, J. F., R. M. Fonseca, K. Rutledge, J. Martín-Torres, and J. Yu, 2019: Weather simulation uncertainty estimation using Bayesian hierarchical models. Journal of Applied Meteorology and Climatology, 58, 585–603, https://doi.org/10.1175/JAMC-D-18-0018.1.
Google Scholar
Warrach-Sagi, K., T. Schwitalla, V. Wulfmeyer, and H.-S. Bauer, 2013: Evaluation of a climate simulation in Europe based on the WRF-NOAH model system: Precipitation in Germany. Climate Dyn., 41, 755–774, https://doi.org/10.1007/s00382-013-1727-7.
Google Scholar
Wei, F. Y., and J. Y. Huang, 2010: A study of predictability for summer precipitation on East China using downscaling techniques. Journal of Tropical Meteorology, 26, 483–488, https://doi.org/10.3969/j.issn.1004-4965.2010.04.013. (in Chinese with English abstract)
Google Scholar
Wilby, R. L., and T. M. L. Wigley, 1997: Downscaling general circulation model output: A review of methods and limitations. Progress in Physical Geography: Earth and Environment, 21, 530–548, https://doi.org/10.1177/030913339702100403.
Google Scholar
Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press.
Google Scholar
Wootten, A., J. J. Bowden, R. Boyles, and A. Terando, 2016: The sensitivity of WRF downscaled precipitation in Puerto Rico to cumulus parameterization and interior grid nudging. Journal of Applied Meteorology and Climatology, 65, 2263–2281, https://doi.org/10.1175/JAMC-D-16-0121.1.
Google Scholar
Wu, W., Z. R. Liang, and X. C. Liu, 2018: Projection of the daily precipitation using CDF-T method at meteorological observation site scale. Plateau Meteorology, 37, 796–805, https://doi.org/10.7522/j.issn.1000-0534.2017.00064. (in Chinese with English abstract)
Google Scholar
Zeng, X. B., and A. Beljaars, 2005: A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geo-phys. Res. Lett., 32, L14605, https://doi.org/10.1029/2005GL023030.
Google Scholar
Zorita, E., and H. von Storch, 1999: The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. J. Climate, 12, 2474–2489, https://doi.org/10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2.
Google Scholar