2018 Continues Record Global Ocean Warming

References

  1. Abraham, J. P., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450–483, https://doi.org/10.1002/rog.20022.

    Article  Google Scholar 

  2. Argo, 2000: Argo float data and metadata from global data assembly Centre (Argo GDAC). SEANOE, https://doi.org/10.17882/42182

  3. Boyer, T. P., and Coauthors, 2013: World ocean database 2013. NOAA Atlas NESDIS 72, 209 pp.

    Google Scholar 

  4. Cheng, L. J., and J. Zhu, 2018: 2017 was the warmest year on record for the global ocean. Adv. Atmos. Sci., 35(3), 261–263, https://doi.org/10.1007/s00376-018-8011-z.

    Article  Google Scholar 

  5. Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    Article  Google Scholar 

  6. Cheng, L., J. Abraham, Z. Hausfather, and K. E. Trenberth, 2019: How fast are the oceans warming? Science, 363, 128–129, https://doi.org/10.1126/science.aav7619.

    Article  Google Scholar 

  7. Cheng, L. J., G. J. Wang, J. P. Abraham, and G. Huang, 2018: Decadal ocean heat redistribution since the late 1990s and its association with key climate modes. Climate, 6, 91, https://doi.org/10.3390/cli6040091.

    Article  Google Scholar 

  8. Fasullo, J. T., and R. S. Nerem, 2018: Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future. Proceedings of the National Academy of Sciences of the United States of America, 115, 12 944–12 949, https://doi.org/10.1073/pnas.1813233115.

    Article  Google Scholar 

  9. Fasullo, J. T., B. L. Otto-Bliesner, and S. Stevenson, 2018: ENSO’s changing influence on temperature, precipitation, and wildfire in a warming climate. Geophys. Res. Lett., 45, 9216–9225, https://doi.org/10.1029/2018GL079022.

    Article  Google Scholar 

  10. Frölicher, T. L., E. M. Fischer, and N. Gruber, 2018: Marine heatwaves under global warming. Nature, 560, 360–364, https://doi.org/10.1038/s41586-018-0383-9.

    Article  Google Scholar 

  11. Gattuso, J. P., and Coauthors, 2018: Ocean solutions to address climate change and its effects on marine ecosystems. Frontiers in Marine Science, 5, 337, https://doi.org/10.3389/fmars.2018.00337.

    Article  Google Scholar 

  12. Hughes, T. P., and Coauthors, 2018: Global warming transforms coral reef assemblages. Nature, 556, 492–496, https://doi.org/10.1038/s41586-018-0041-2.

    Article  Google Scholar 

  13. IPCC, 2018: Summary for Policymakers, Masson-Delmotte et al., Eds., Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, World Meteorological Organization, Geneva, Switzerland, 32 pp.

  14. Le Quéré, C., and Coauthors, 2018: Global carbon budget 2018. Earth System Science Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018.

    Article  Google Scholar 

  15. Li, Y. L., W. Q. Han, A. X. Hu, G. A. Meehl, and F. Wang, 2018: Multidecadal changes of the upper Indian ocean heat content during 1965–2016. J. Climate, 31, 7863–7884, https://doi.org/10.1175/JCLI-D-18-0116.1.

    Article  Google Scholar 

  16. Nerem, R. S., B. D. Beckley, J. T. Fasullo, B. D. Hamlington, D. Masters, and G. T. Mitchum, 2018: Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences of the United States of America, 115(9), 2022–2025, https://doi.org/10.1073/pnas.1717312115.

    Article  Google Scholar 

  17. Oliver, E. C. J., and Coauthors, 2018: Longer and more frequent marine heatwaves over the past century. Nature Communications, 9, 1324, https://doi.org/10.1038/s41467-018-03732-9.

    Article  Google Scholar 

  18. Patricola, C. M., and M. F. Wehner, 2018: Anthropogenic influences on major tropical cyclone events. Nature, 563, 339–346, https://doi.org/10.1038/s41586-018-0673-2.

    Article  Google Scholar 

  19. Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, UK, New York, NY, USA.

    Google Scholar 

  20. Schmidtko, S., L. Stramma, and M. Visbeck, 2017: Decline in global oceanic oxygen content during the past five decades. Nature, 542, 335–339, https://doi.org/10.1038/nature21399.

    Article  Google Scholar 

  21. Shi, J. R., S. P. Xie, and L. D. Talley, 2018: Evolving relative importance of the Southern Ocean and north Atlantic in anthropogenic ocean heat uptake. J. Climate, 31, 7459–7479, https://doi.org/10.1175/JCLI-D-18-0170.1.

    Article  Google Scholar 

  22. Swart, N. C., S. T. Gille, J. C. Fyfe, and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience, 11, 836–841, https://doi.org/10.1038/s41561-018-0226-1.

    Article  Google Scholar 

  23. Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Research, 47, 123–138, https://doi.org/10.3354/cr00953.

    Article  Google Scholar 

  24. Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 3129–3144, https://doi.org/10.1175/JCLI-D-13-00294.1.

    Article  Google Scholar 

  25. Trenberth, K. E., L. J. Cheng, P. Jacobs, Y. X. Zhang, and J. Fasullo, 2018: Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future, 6, 730–744, https://doi.org/10.1029/2018EF000825.

    Article  Google Scholar 

  26. von Schuckmann, K., and Coauthors, 2016: An imperative to monitor Earth’s energy imbalance. Nat. Clim. Change, 6, 138–144, https://doi.org/10.1038/nclimate2876.

    Article  Google Scholar 

  27. WCRP Global Sea Level Budget Group, 2018: Global sea-level budget 1993-present. Earth System Science Data, 10(3), 1551–1590, https://doi.org/10.5194/essd-10-1551-2018.

    Article  Google Scholar 

  28. Wu, L. G., R. F. Wang, and X. F. Feng, 2018: Dominant role of the ocean mixed layer depth in the increased proportion of intense typhoons during 1980–2015. Earth’s Future, 6, 1518–1527, https://doi.org/10.1029/2018EF000973.

    Article  Google Scholar 

Download references

Acknowledgements

The IAP analysis is supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0603202 and 2016YFC1401705). We appreciate Tim BOYER from NOAA/NCEI to provide the in-situ ocean observations from NOAA/NCEI that were used in this analysis. Author contributions: L. C. and J. Z. are responsible for the IAP analysis and drafted the initial manuscript, with subsequent help from J. A., K. E. T. Authors J.A., K. E. T., J. F., Z. B., F. Y., L. W., X. C. and X. S. provide continual and vital support to the IAP analysis and activities, and contributed to refining this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lijing Cheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Zhu, J., Abraham, J. et al. 2018 Continues Record Global Ocean Warming. Adv. Atmos. Sci. 36, 249–252 (2019). https://doi.org/10.1007/s00376-019-8276-x

Download citation