The Effect of Super Volcanic Eruptions on Ozone Depletion in a Chemistry-Climate Model

Abstract

With the gradual yet unequivocal phasing out of ozone depleting substances (ODSs), the environmental crisis caused by the discovery of an ozone hole over the Antarctic has lessened in severity and a promising recovery of the ozone layer is predicted in this century. However, strong volcanic activity can also cause ozone depletion that might be severe enough to threaten the existence of life on Earth. In this study, a transport model and a coupled chemistry-climate model were used to simulate the impacts of super volcanoes on ozone depletion. The volcanic eruptions in the experiments were the 1991 Mount Pinatubo eruption and a 100 × Pinatubo size eruption. The results show that the percentage of global mean total column ozone depletion in the 2050 RCP8.5 100 × Pinatubo scenario is approximately 6% compared to two years before the eruption and 6.4% in tropics. An identical simulation, 100 × Pinatubo eruption only with natural source ODSs, produces an ozone depletion of 2.5% compared to two years before the eruption, and with 4.4% loss in the tropics. Based on the model results, the reduced ODSs and stratospheric cooling lighten the ozone depletion after super volcanic eruption.

摘 要

随着平流层中臭氧损耗物质(ODSs)的不断清除, 由南极上空臭氧空洞的发现所引发的环境危机正在减轻, 并且臭氧层也在逐渐恢复. 然而, 强火山活动同样会造成严重的臭氧损耗, 从而威胁地球上的生命. 在本研究中, 利用了一个大气输送模式和一个化学气候模式, 来模拟超级火山爆发后造成的臭氧损耗. 模拟的火山事件为1991年的皮纳图博(Pinatubo)火山以及一个100×Pinatubo级别的火山. 结果表明, 在2050 RCP8.5 100×Pinatubo情形下, 全球平均臭氧损耗和爆发前两年相比大约为6%, 赤道地区为6.4%. 而一个理想情形, 即100×Pinatubo在自然源ODSs全部清除, 只剩自然源的背景下爆发后, 全球平均臭氧损耗和爆发前两年相比为2.5%, 赤道地区为4.4%. 根据模式结果, ODSs含量的下降以及平流层降温能够减轻超级火山爆发后造成的臭氧损耗.

This is a preview of subscription content, log in to check access.

References

  1. Ambrose, S. H., 1998: Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. Journal of Human Evolution, 34, 623–651, https://doi.org/10.1006/jhev.1998.0219.

    Article  Google Scholar 

  2. Ansmann, A., I. Mattis, U. Wandinger, F. Wagner, J. Reichardt, and T. Deshler, 1997: Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over Central Europe at 53.4?N. J. At-mos. Sci., 54, 2630–2641, https://doi.org/10.1175/1520-0469(1997)054<2630:EOTPAR>2.0.CO;2.

    Article  Google Scholar 

  3. Aquila, V., L. D. Oman, R. Stolarski, A. R. Douglass, and P. A. Newman, 2013: The response of ozone and nitrogen dioxide to the eruption of Mt. Pinatubo at southern and northern mid-latitudes. J. Atmos. Sci., 70, 894–900, https://doi.org/10.1175/jas-d-12-0143.1.

    Article  Google Scholar 

  4. Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179–229, https://doi.org/10.1029/1999rg000073.

    Article  Google Scholar 

  5. Bekki, S., 1995: Oxidation of volcanic SO2: A sink for stratospheric OH and H2O. Geophys. Res. Lett., 22, 913–916, https://doi.org/10.1029/95gl00534.

    Article  Google Scholar 

  6. Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc}., 112, 677–691, https://doi.org/10.1002/qj.49711247307.

    Google Scholar 

  7. Bluth, G. J. S., S. D. Doiron, C. C. Schnetzler, A. J. Krueger, and L. S. Walter, 1992: Global tracking of the SO2 clouds from the June, 1991 Mount-Pinatubo eruptions. Geophys. Res. Lett., 19, 151–154, https://doi.org/10.1029/91gl02792.

    Article  Google Scholar 

  8. Bobrowski, N., G. Hönninger, B. Galle, and U. Platt, 2003: Detection of bromine monoxide in a volcanic plume. Nature, 423, 273–276, https://doi.org/10.1038/nature01625.

    Article  Google Scholar 

  9. Cadoux, A., B. Scaillet, S. Bekki, C. Oppenheimer, and T. H. Druitt, 2015: Stratospheric ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece). Scientific Reports, 5, 12243, https://doi.org/10.1038/srep12243.

    Article  Google Scholar 

  10. Cagnazzo, C., and Coauthors, 2009: Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of chemistry climate models. Atmospheric Chemistry and Physics, 9, 8935–8948, https://doi.org/10.5194/acp-9-8935-2009.

    Article  Google Scholar 

  11. Carslaw, K. S., B. P. Luo, S. L. Clegg, T. Peter, P. Brimblecombe, and P. J. Crutzen, 1994:. Geophys. Res. Lett., 21, 2479–2482, https://doi.org/10.1029/94GL02799.

    Article  Google Scholar 

  12. Chen, W., and T. Li, 2007: Modulation of northern hemisphere wintertime stationary planetary wave activity: East Asian climate relationships by the Quasi-Biennial Oscillation. J. Geophys. Res., 112, D20120, https://doi.org/10.1029/2007jd008611.

    Article  Google Scholar 

  13. Chen, W., and K. Wei, 2009: Interannual variability of the winter stratospheric polar vortex in the northern hemisphere and their relations to QBO and ENSO. Adv. Atmos. Sci., 26(5), 855–863, https://doi.org/10.1007/s00376-009-8168-6.

    Article  Google Scholar 

  14. Coffey, M. T., 1996: Observations of the impact of volcanic activity on stratospheric chemistry. J. Geophys. Res., 101, 6767–6780, https://doi.org/10.1029/95jd03763.

    Article  Google Scholar 

  15. Crutzen, P. J., and F. Arnold, 1986: Nitric acid cloud formation in the cold antarctic stratosphere: A major cause for the springtime “ozone hole”. Nature, 324, 651–655, https://doi.org/10.1038/324651a0.

    Article  Google Scholar 

  16. Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 1830–1841, https://doi.org/10.1002/qj.493.

    Article  Google Scholar 

  17. Delwiche, C. F., 2005: Voyage to the bottom of the tree. Science, 307, 676–677, https://doi.org/10.1126/science.1105582.

    Article  Google Scholar 

  18. Dvortsov, V. L., S. G. Zvenigorodsky, and S. P. Smyslaev, 1992: On the use of isaksen-luther method of computing photodissociation rates in photochemical models. J. Geophys. Res., 97, 7593–7601, https://doi.org/10.1029/91JD02861.

    Article  Google Scholar 

  19. Engel, A., H. Bönisch, J. Ostermöller, M. P. Chipperfield, S. Dhomse, and P. Jöckel, 2018: A refined method for calculating equivalent effective stratospheric chlorine. Atmospheric Chemistry and Physics, 18, 601–619, https://doi.org/10.5194/acp-18-601-2018.

    Article  Google Scholar 

  20. Fahey, D. W., and Coauthors, 1993: In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion. Nature, 363, 509–514.

    Article  Google Scholar 

  21. Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in antarctica reveal seasonal CLOx/NOx interaction. Nature, 315, 207–210, https://doi.org/10.1038/315207a0.

    Article  Google Scholar 

  22. Free, M., and J. K. Angell, 2002: Effect of volcanoes on the vertical temperature profile in radiosonde data. J. Geophys. Res., 107, 4101, https://doi.org/10.1029/2001jd001128.

    Article  Google Scholar 

  23. Free, M., and J. Lanzante, 2009: Effect of volcanic eruptions on the vertical temperature profile in radiosonde data and climate models. J. Climate, 22, 2925–2939, https://doi.org/10.1175/2008jcli2562.1.

    Article  Google Scholar 

  24. Galin, V. Y., S. P. Smyshlyaev, and E. M. Volodin, 2007: Combined chemistry-climate model of the atmosphere. Izvestiya, Atmospheric and Oceanic Physics, 43, 399–412, https://doi.org/10.1134/s0001433807040020.

    Article  Google Scholar 

  25. Graf, H.-F., D. Zanchettin, C. Timmreck, and M. Bittner, 2014: Observational constraints on the tropospheric and near-surface winter signature of the northern hemisphere stratospheric polar vortex. Climate Dyn., 43, 3245–3266, https://doi.org/10.1007/s00382-014-2101-0.

    Article  Google Scholar 

  26. Hamilton, K., 1993: An examination of observed southern oscillation effects in the northern hemisphere stratosphere. J. At-mos. Sci., 50, 3468–3474, https://doi.org/10.1175/1520-0469(1993)050<3468:AEOOSO>2.0.CO;2.

    Article  Google Scholar 

  27. Hansen, J., M. Sato, G. Russell, and P. Kharecha, 2013: Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Society A: Mathematical, Physical and Engineering Sciences, 371, 20120294, https://doi.org/10.1098/rsta.2012.0294.

    Article  Google Scholar 

  28. Hanson, D. R., and A. R. Ravishankara, 1993: Reaction of ClONO2 with HCl on NAT, NAD, and frozen sulfuric-acid and hydrolysis of N2O5 and ClONO2 on frozen sulfuric-acid. J. Geophys. Res., 98, 22931–22936, https://doi.org/10.1029/93jd01929.

    Article  Google Scholar 

  29. Hines, C. O., 1997: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 371–386, https://doi.org/10.1016/s1364-6826(96)00079-X.

    Article  Google Scholar 

  30. Hoffmann, L., T. Rößler, S. Griessbach, Y. Heng, and O. Stein, 2016: Lagrangian transport simulations of volcanic sulfur dioxide emissions: Impact of meteorological data products. J. Geophys. Res., 121, 4651–4673, https://doi.org/10.1002/2015jd023749.

    Google Scholar 

  31. Hofmann, D. J., and Coauthors, 1994: Ozone loss in the lower stratosphere over the United-States in 1992-1993: Evidence for heterogeneous chemistry on the pinatubo aerosol. Geophys. Res. Lett., 21, 65–68, https://doi.org/10.1029/93gl02526.

    Article  Google Scholar 

  32. Holton, J. R., and H. C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200–2208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    Article  Google Scholar 

  33. Hunton, D. E., and Coauthors, 2005: In-situ aircraft observations of the 2000 Mt. Hekla volcanic cloud: Composition and chemical evolution in the Arctic lower stratosphere. Journal of Volcanology and Geothermal Research, 145, 23–34, https://doi.org/10.1016/j.jvolgeores.2005.01.005.

    Article  Google Scholar 

  34. Joshi, M. M., and G. S. Jones, 2009: The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions. Atmospheric Chemistry and Physics, 9, 6109–6118, https://doi.org/10.5194/acp-9-6109-2009.

    Article  Google Scholar 

  35. Jouzel, J., and Coauthors, 2007: Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793–796, https://doi.org/10.1126/science.1141038.

    Article  Google Scholar 

  36. Klobas, J. E., D. M. Wilmouth, D. K. Weisenstein, J. G. Anderson, and R. J. Salawitch, 2017: Ozone depletion following future volcanic eruptions. Geophys. Res. Lett., 44, 7490–7499, https://doi.org/10.1002/2017GL073972.

    Article  Google Scholar 

  37. Kremser, S., and Coauthors, 2016: Stratospheric aerosol-observations, processes, and impact on climate. Rev. Geophys., 54, 278–335, https://doi.org/10.1002/2015rg000511.

    Article  Google Scholar 

  38. Kutterolf, S., T. H. Hansteen, K. Appel, A. Freundt, K. Krüger, W. Pérez, and H. Wehrmann, 2013: Combined bromine and chlorine release from large explosive volcanic eruptions: A threat to stratospheric ozone? Geology, 41, 707–710, https://doi.org/10.1130/g34044.1.

    Article  Google Scholar 

  39. Lanzante, J. R., 2007: Diagnosis of radiosonde vertical temperature trend profiles: Comparing the influence of data homog-enization versus model forcings. J. Climate, 20, 5356–5364, https://doi.org/10.1175/2007jcli1827.1.

    Article  Google Scholar 

  40. Lean, J. L., and D. H. Rind, 2009: How will Earth's surface temperature change in future decades? Geophys. Res. Lett., 36, L15708, https://doi.org/10.1029/2009gl038932.

    Article  Google Scholar 

  41. LeGrande, A. N., K. Tsigaridis, and S. E. Bauer, 2016: Role of atmospheric chemistry in the climate impacts of stratospheric volcanic injections. Nature Geoscience, 9, 652–655, https://doi.org/10.1038/ngeo2771.

    Article  Google Scholar 

  42. Legras, B., B. Joseph, and F. Lefèvre, 2003: Vertical diffusivity in the lower stratosphere from Lagrangian back-trajectory reconstructions of ozone profiles. J. Geophys. Res., 108, 4562, https://doi.org/Artn456210.1029/2002jd003045.

    Article  Google Scholar 

  43. Legras, B., I. Pisso, G. Berthet, and F. Lefèvre, 2005: Variability of the Lagrangian turbulent diffusion in the lower stratosphere. Atmospheric Chemistry and Physics, 5, 1605–1622, https://doi.org/10.5194/acp-5-1605-2005.

    Article  Google Scholar 

  44. Lisiecki, L. E., and M. E. Raymo, 2005: A Pliocene-Pleistocene stack of 57 globally distributed benthic delta δ18O records. Paleoceanography and Paleoclimatology, 20, PA1003, https://doi.org/10.1029/2004pa001071.

    Google Scholar 

  45. Lurton, T., F. Jégou, G. Berthet, J. B. Renard, L. Clarisse, A. Schmidt, C. Brogniez, and T. J. Roberts, 2018: Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations. Atmospheric Chemistry and Physics, 18, 3223–3247, https://doi.org/10.5194/acp-18-3223-2018.

    Article  Google Scholar 

  46. Marshall, L., and Coauthors, 2018: Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora. Atmospheric Chemistry and Physics, 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018.

    Article  Google Scholar 

  47. Mather, T. A., 2015: Volcanoes and the environment: Lessons for understanding Earth's past and future from studies of present-day volcanic emissions. Journal of Volcanology and Geothermal Research, 304, 160–179, https://doi.org/10.1016/j.jvolgeores.2015.08.016.

    Article  Google Scholar 

  48. McCormick, M. P., L. W. Thomason, and C. R. Trepte, 1995: Atmospheric effects of the Mt Pinatubo eruption. Nature, 373, 399–404, https://doi.org/10.1038/373399a0.

    Article  Google Scholar 

  49. McGee, T. J., P. Newman, M. Gross, U. Singh, S. Godin, A. M. Lacoste, and G. Megie, 1994: Correlation of ozone loss with the presence of volcanic aerosols. Geophys. Res. Lett., 21, 2801–2804, https://doi.org/10.1029/94gl02350.

    Article  Google Scholar 

  50. Muthers, S., F. Arfeuille, C. C. Raible, and E. Rozanov, 2015: The impacts of volcanic aerosol on stratospheric ozone and the northern hemisphere polar vortex: Separating radiative-dynamical changes from direct effects due to enhanced aerosol heterogeneous chemistry. Atmospheric Chemistry and Physics, 15, 11461–11476, https://doi.org/10.5194/acp-15-11461-2015.

    Article  Google Scholar 

  51. Oppenheimer, C., 2002: Limited global change due to the largest known Quaternary eruption, Toba ≈ 74 kyr BP? Quaternary Science Reviews, 21, 1593–1609, https://doi.org/10.1016/S0277-3791(01)00154-8.

    Article  Google Scholar 

  52. Oppenheimer, C., and Coauthors, 2010: Atmospheric chemistry of an Antarctic volcanic plume. J. Geophys. Res., 115, D04303, https://doi.org/10.1029/2009jd011910.

    Google Scholar 

  53. Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 1001–1039, https://doi.org/10.1002/qj.49711247406.

    Article  Google Scholar 

  54. Peter, T., 1997: Microphysics and heterogeneous chemistry of polar stratospheric clouds. Annu. Rev. Phys. Chem., 48, 785–822, https://doi.org/10.1146/annurev.physchem.48.1.785.

    Article  Google Scholar 

  55. Petraglia, M. D., R. Korisettar, and J. N. Pal, 2012: The Toba volcanic super-eruption of 74,000 years ago: Climate change, environments, and evolving humans. Quaternary International, 258, 1–4, https://doi.org/10.1016/j.quaint.2011.12.001.

    Article  Google Scholar 

  56. Pisso, I., E. Real, K. S. Law, B. Legras, N. Bousserez, J. L. Attié, and H. Schlager, 2009: Estimation of mixing in the troposphere from Lagrangian trace gas reconstructions during long-range pollution plume transport. J. Geophys. Res., 114, 12882, https://doi.org/10.1029/2008jd011289.

    Article  Google Scholar 

  57. Poberaj, C. S., J. Staehelin, and D. Brunner, 2011: Missing stratospheric ozone decrease at southern hemisphere middle latitudes after Mt. Pinatubo: A dynamical perspective. J. Atmos. Sci., 68, 1922–1945, https://doi.org/10.1175/JAS-D-10-05004.1.

    Article  Google Scholar 

  58. Rampino, M. R., 2002: Supereruptions as a threat to civilizations on earth-like planets. Icarus, 156, 562–569, https://doi.org/10.1006/icar.2001.6808.

    Article  Google Scholar 

  59. Rampino, M. R., and S. Self, 1992: Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature, 359, 50–52, https://doi.org/10.1038/359050a0.

    Article  Google Scholar 

  60. Randel, W. J., F. Wu, J. M. Russell III, J. W. Waters, and L. Froidevaux, 1995: Ozone and temperature-changes in the stratosphere following the eruption of Mount-Pinatubo. J. Geophys. Res., 100, 16753–16764, https://doi.org/10.1029/95jd01001.

    Article  Google Scholar 

  61. Randel, W. J., A. K. Smith, F. Wu, C.-Z. Zou, and H. F. Qian, 2016: Stratospheric temperature trends over 1979–2015 derived from combined SSU, MLS, and SABER satellite observations. J. Climate, 29, 4843–4859, https://doi.org/10.1175/JCLI-D-15-0629.1.

    Article  Google Scholar 

  62. Ren, R.-C., M. Cai, C. Y. Xiang, and G. X. Wu, 2012: Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Climate Dyn., 38, 1345–1358, https://doi.org/10.1007/s00382-011-1137-7.

    Article  Google Scholar 

  63. Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191–219, https://doi.org/10.1029/1998rg000054.

    Article  Google Scholar 

  64. Robock, A., C. M. Ammann, L. Oman, D. Shindell, S. Levis, and G. Stenchikov, 2009: Did the Toba volcanic eruption of ≈ 74 ka B. P. produce widespread glaciation? J. Geophys. Res., 114, D10107, https://doi.org/10.1029/2008jd011652.

    Article  Google Scholar 

  65. Roscoe, H. K., 2001: The risk of large volcanic eruptions and the impact of this risk on future ozone depletion. Natural Hazards, 23, 231–246, https://doi.org/10.1023/A:1011178016473.

    Article  Google Scholar 

  66. Rosi, M., M. Paladio-Melosantos, A. Di Muro, R. Leoni, and T. Bacolcol, 2001: Fall vs flow activity during the 1991 climactic eruption of Pinatubo Volcano (Philippines). Bulletin of Volcanology, 62, 549–566, https://doi.org/10.1007/s004450000118.

    Article  Google Scholar 

  67. Rößler, T., O. Stein, Y. Heng, P. Baumeister, and L. Hoffmann, 2018: Trajectory errors of different numerical integration schemes diagnosed with the MPTRAC advection module driven by ECMWF operational analyses. Geoscientific Model Development, 11, 575–592, https://doi.org/10.5194/gmd-11-575-2018.

    Article  Google Scholar 

  68. Sander, S. P., and Coauthors, 2003: Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation Number 14. JPL Publication 02-25, National Aeronautics and Space Administration. [Available online from http://www.iup.uni-bremen.de/~bms/lectures/JPL02-25rev02.pdf]

    Google Scholar 

  69. Santer, B. D., and Coauthors, 2001: Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J. Geophys. Res., 106, 28033–28059, https://doi.org/10.1029/2000jd000189.

    Article  Google Scholar 

  70. Schmidt, A., and Coauthors, 2016: Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nature Geoscience, 9, 77–82, https://doi.org/10.1038/ngeo2588.

    Article  Google Scholar 

  71. Schoeberl, M. R., and D. L. Hartmann, 1991: The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science, 251, 46–52, https://doi.org/10.1126/science.251.4989.46.

    Article  Google Scholar 

  72. Smyshlyaev, S. P., V. L. Dvortsov, M. A. Geller, and V. A. Yudin, 1998: A two-dimensional model with input parameters from a general circulation model: Ozone sensitivity to different formulations for the longitudinal temperature variation. J. Geophys. Res., 103, 28 373–28 387, https://doi.org/10.1029/98JD02354.

    Article  Google Scholar 

  73. Smyshlyaev, S. P., V. Y. Galin, G. Shaariibuu, and M. A. Motsakov. 2010: Modeling the variability of gas and aerosol components in the stratosphere of polar regions. Izvestiya, Atmospheric and Oceanic Physics, 46, 265–280, https://doi.org/10.1134/s0001433810030011.

    Article  Google Scholar 

  74. Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37, 275–316, https://doi.org/10.1029/1999rg900008.

    Article  Google Scholar 

  75. Solomon, S., D. Kinnison, J. Bandoro, and R. Garcia, 2015: Simulation of polar ozone depletion: An update. J. Geophys. Res., 120, 7958–7974, https://doi.org/10.1002/2015JD023365.

    Article  Google Scholar 

  76. Solomon, S., D. J. Ivy, D. Kinnison, M. J. Mills, R. R. Neely III, and A. Schmidt, 2016: Emergence of healing in the Antarctic ozone layer. Science, 353, 269–274, https://doi.org/10.1126/science.aae0061.

    Article  Google Scholar 

  77. Son, S.-W., Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, 2017: Stratospheric control of the Madden-Julian Oscillation. J. Climate, 30, 1909–1922, https://doi.org/10.1175/Jcli-D-16-0620.1.

    Article  Google Scholar 

  78. SPARC, 2013: SPARC report on the lifetimes of stratospheric ozone-depleting substances, their replacements, and related species. SPARC Report No. 6, WCRP-15/2013.

    Google Scholar 

  79. Stenchikov, G., K. Hamilton, R. J. Stouffer, A. Robock, V. Ramaswamy, B. Santer, and H.-F. Graf, 2006: Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res., 111, D07107, https://doi.org/10.1029/2005jd006286.

    Article  Google Scholar 

  80. Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005.

    Article  Google Scholar 

  81. Tabazadeh, A., and R. P. Turco, 1993: Stratospheric chlorine injection by volcanic eruptions: HCI scavenging and implications for ozone. Science, 260, 1082–1086, https://doi.org/10.1126/science.260.5111.1082.

    Article  Google Scholar 

  82. Tabazadeh, A., K. Drdla, M. R. Schoeberl, P. Hamill, and O. B. Toon, 2002: Arctic “ozone hole” in a cold volcanic stratosphere. Proceedings of the National Academy of Sciences of the United States of America, 99, 2609–2612, https://doi.org/10.1073/pnas.052518199.

    Article  Google Scholar 

  83. Telford, P., P. Braesicke, O. Morgenstern, and J. Pyle, 2009: Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM. Atmospheric Chemistry and Physics, 9, 4251–4260, https://doi.org/10.5194/acp-9-4251-2009.

    Article  Google Scholar 

  84. Vidal, C. M., N. Métrich, J.-C. Komorowski, I. Pratomo, A. Michel, N. Kartadinata, V. Robert, and F. Lavigne, 2016: The 1257 Samalas eruption (Lombok, Indonesia): The single greatest stratospheric gas release of the Common Era. Scientific Reports, 6, 34868, https://doi.org/10.1038/srep34868.

    Article  Google Scholar 

  85. von Glasow, R., N. Bobrowski, and C. Kern, 2009: The effects of volcanic eruptions on atmospheric chemistry. Chemical Geology, 263, 131–142, https://doi.org/10.1016/j.chemgeo.2008.08.020.

    Article  Google Scholar 

  86. Wei, K., W. Chen, and R. H. Huang, 2007: Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan Oscillation in the northern hemisphere winter. Geophys. Res. Lett., 34, L16814, https://doi.org/10.1029/2007GL030478.

    Google Scholar 

  87. Williams, M., 2012: Did the 73 ka Toba super-eruption have an enduring effect? Insights from genetics, prehistoric archaeology, pollen analysis, stable isotope geochemistry, geomor-phology, ice cores, and climate models. Quaternary International, 269, 87–93, https://doi.org/10.1016/j.quaint.2011.03.045.

    Article  Google Scholar 

  88. World Meteorological Organization (WMO), 2007: Scientific assessment of ozone depletion: Global ozone research and monitoring project. Report No. 50, Geneva, Switzerland, 572 pp.

    Google Scholar 

  89. World Meteorological Organization (WMO), 2014: Scientific Assessment of Ozone Depletion, 2014. World Meteorological Organization, Global Ozone Research And Monitoring Project, Report No. 55, Geneva, Switzerland, 416 pp.

    Google Scholar 

  90. World Meteorological Organization (WMO), 2018: Scientific Assessment of Ozone Depletion, 2018. World Meteorological Organization, Global Ozone Research and Monitoring Project, Report No. 58, Geneva, Switzerland, 588 pp.

    Google Scholar 

  91. Wu, S. N., S. T. Chen, and F. C. Duan, 2012: The relation between the 72 ka BP Event and the toba super-eruption. Advance in Earth Science, 27, 35–41, https://doi.org/10.11867/j.issn.1001-8166.2012.01.0035. (in Chinese with English abstract)

    Google Scholar 

  92. Wu, X., S. Griessbach, and L. Hoffmann, 2017: Equatorward dispersion of a high-latitude volcanic plume and its relation to the Asian summer monsoon: A case study of the Sarychev eruption in 2009. Atmospheric Chemistry and Physics, 17, 13439–13455, https://doi.org/10.5194/acp-17-13439-2017.

    Article  Google Scholar 

  93. Wu, X., S. Griessbach, and L. Hoffmann, 2018: Long-range transport of volcanic aerosol from the 2010 Merapi tropical eruption to Antarctica. Atmospheric Chemistry and Physics, 18, 15859–15877, https://doi.org/10.5194/acp-18-15859-2018.

    Article  Google Scholar 

  94. Wyser, K., 1998: The effective radius in large-scale models: Impact of aerosols and coalescence. Atmospheric Research, 49, 213–234, https://doi.org/10.1016/S0169-8095(98)00081-7.

    Article  Google Scholar 

  95. Xie, F., J. Li, W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmospheric Chemistry and Physics, 12, 5259–5273, https://doi.org/10.5194/acp-12-5259-2012.

    Article  Google Scholar 

  96. Xie, F., J. P. Li, W. S. Tian, J. K. Zhang, and C. Sun, 2014: The relative impacts of El Niño Modoki, canonical El Niño, and QBO on tropical ozone changes since the 1980s. Environmental Research Letters, 9, 064020, https://doi.org/10.1088/1748-9326/9/6/064020.

    Article  Google Scholar 

  97. Xie, F., X. Zhou, J. P. Li, C. Sun, J. Feng, and X. Ma, 2018: The key role of background sea surface temperature over the cold tongue in asymmetric responses of the Arctic stratosphere to El Niño-Southern Oscillation. Environmental Research Letters, 13, 114007, https://doi.org/10.1088/1748-9326/aae79b.

    Article  Google Scholar 

  98. Yu, J.-Y., H.-Y. Kao, T. Lee, and S. T. Kim, 2011: Subsurface ocean temperature indices for Central-Pacific and Eastern-Pacific types of El Niño and La Niña events. Theor. Appl. Climatol., 103, 337–344, https://doi.org/10.1007/s00704-010-0307-6.

    Article  Google Scholar 

  99. Zhu, Y. Q., and Coauthors, 2018: Stratospheric aerosols, polar stratospheric clouds, and polar ozone depletion after the Mount Calbuco eruption in 2015. J. Geophys. Res., 123, 12 308–12 331, https://doi.org/10.1029/2018jd028974.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Project of China (Grant No. 2016YFA0600604), the National Natural Science Foundation of China (Grant No. 41461144001 and No. 41861144016), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2014064). We thank the two anonymous referees for their comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ke Wei.

Additional information

Article Highlights

• The global mean total column ozone depletion in the 2050 RCP8.5 100 × Pinatubo scenario is approximately 6% and 6.4% in tropics.

• The 100 × Pinatubo eruption only with natural source ODSs experiment produces an ozone depletion of 2.5%, with 4.4% loss in the tropics.

• The reduced ODSs and stratospheric cooling lighten the ozone depletion after super volcanic eruptions.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Wei, K., Wu, X. et al. The Effect of Super Volcanic Eruptions on Ozone Depletion in a Chemistry-Climate Model. Adv. Atmos. Sci. 36, 823–836 (2019). https://doi.org/10.1007/s00376-019-8241-8

Download citation

Key words

  • stratospheric ozone
  • volcanic eruptions
  • stratospheric aerosols
  • chemistry-climate model

关键词

  • 平流层臭氧
  • 火山爆发
  • 平流层气溶胶
  • 化学气候模式