Evidence of Specific MJO Phase Occurrence with Summertime California Central Valley Extreme Hot Weather

Abstract

This study examines associations between California Central Valley (CCV) heat waves and the Madden Julian Oscillation (MJO). These heat waves have major economic impact. Our prior work showed that CCV heat waves are frequently preceded by convection over the tropical Indian and eastern Pacific oceans, in patterns identifiable with MJO phases. The main analysis method is lagged composites (formed after each MJO phase pair) of CCV synoptic station temperature, outgoing longwave radiation (OLR), and velocity potential (VP). Over the CCV, positive temperature anomalies occur only after the Indian Ocean (phases 2–3) or eastern Pacific Ocean (phases 8–1) convection (implied by OLR and VP fields). The largest fractions of CCV hot days occur in the two weeks after onset of those two phase pairs. OLR and VP composites have significant subsidence and convergence above divergence over the CCV during heat waves, and these structures are each part of larger patterns having significant areas over the Indian and Pacific Oceans. Prior studies showed that CCV heat waves can be roughly grouped into two clusters: Cluster 2 is preceded by a heat wave over northwestern North America, while Cluster 1 is not. OLR and VP composite analyses are applied separately to these two clusters. However, for Cluster 2, the subsidence and VP over the CCV are not significant, and the large-scale VP pattern has low correlation with the MJO lagged composite field. Therefore, the association between the MJO convection and subsequent CCV heat wave is more evident in Cluster 1 than Cluster 2.

摘 要

本研究探讨了加利福尼亚州中央山谷(CCV)热浪和MJO之间的关系. 这些热浪事件对经济有着重要的影响. 我们之前的研究表明在发生CCV热浪之前, 在热带印度洋和东太平洋上空通常会有对流活动, 表现为MJO位相. 本文所用的主要分析方法为滞后合成分析方法, 即研究每个MJO位相对发生后CCV台站温度, 向外长波辐射(OLR)和速度势(VP)的演变过程. 从OLR和VP的分析结果可以看出, CCV的温度正异常仅仅出现在印度洋(位相2-3)和东太平洋(位相8-1)对流发生之后. CCV极端高温日数也出现在上述两个位相对发生后的两周内. 在热浪事件出现期间, CCV上空呈现低层辐散高层辐合并且伴有显著的下沉运动, 这种结构也是位于印太海洋上空大尺度环流型的一部分. 以往的研究表明CCV热浪可粗略的分为两类, 第二类发生在北美西北部热浪之后, 然而第一类却不是. 我们用OLR和VP的合成分析方法分别分析这两种CCV热浪类型. 对于第二类热浪, 在CCV的下沉运动并不显著, 并且大尺度VP型与MJO滞后合成场之间的相关系数很小. 因此, 第一类CCV热浪呈现出比第二类更强的与前期MJO对流之间的联系.

References

  1. Alexander, L. V., P. Uotila, and N. Nicholls, 2009: Influence of sea surface temperature variability on global temperature and precipitation extremes. J. Geophys. Res.: Atmos. 114, D18116, https://doi.org/10.1029/2009JD012301.

    Article  Google Scholar 

  2. Brown, S. J., J. Caesar, and C. A. T. Ferro, 2008: Global changes in extreme daily temperature since 1950. J. Geophys. Res.: Atmos 113, D05115, https://doi.org/10.1029/2006JD008091.

    Article  Google Scholar 

  3. Cellitti, M. P., J. E. Walsh, R. M. Rauber, and D. H. Portis, 2006: Extreme cold air outbreaks over the United States, the polar vortex, and the large-scale circulation. J. Geophys. Res.: Atmos., 111, D02114, https://doi.org/10.1029/2005JD006273.

    Article  Google Scholar 

  4. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  5. Downton, M. W., and K. A. Miller, 1993: The freeze risk to Florida citrus. Part II: Temperature variability and circulation patterns. J. Climate, 6, 364–372, https://doi.org/10.1175/1520-0442(1993)006<0364:TFRTFC>2.0.CO;2.

    Article  Google Scholar 

  6. Gershunov, A., D. R. Cayan, and S. F. Iacobellis, 2009: The great 2006 heat wave over California and Nevada: Signal of an increasing trend. J. Climate, 22, 6181–6203, https://doi.org/10.1175/2009JCLI2465.1.

    Article  Google Scholar 

  7. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, https://doi.org/10.1002/qj.49710644905.

    Article  Google Scholar 

  8. Grotjahn, R., 2011: Identifying extreme hottest days from large scale upper air data: A pilot scheme to find California Central Valley summertime maximum surface temperatures. Climate Dyn., 37, 587–604, https://doi.org/10.1007/s00382-011-0999-z.

    Article  Google Scholar 

  9. Grotjahn, R., 2013: Ability of CCSM4 to simulate California extreme heat conditions from evaluating simulations of the associated large scale upper air pattern. Climate Dyn., 41, 1187–1197, https://doi.org/10.1007/s00382-013-1668-1.

    Article  Google Scholar 

  10. Grotjahn, R., 2016: Western North American extreme heat, associated large scale synoptic-dynamics, and performance by a climate model. Dynamics and Predictability of Large-Scale High-Impact Weather and Climate Events, J. P. Li et al., Eds., Cambridge University Press, Cambridge. 198–209.

    Google Scholar 

  11. Grotjahn, R., and M. Osman, 2007: Remote weather associated with North Pacific subtropical sea level high properties. International Journal of Climatology, 27, 587–602, https://doi.org/10.1002/joc.1423.

    Article  Google Scholar 

  12. Grotjahn, R., and G. Faure, 2008: Composite predictor maps of extraordinary weather events in the Sacramento, California, Region. Wea. Forecasting, 23, 313–335, https://doi.org/10.1175/2007WAF2006055.1.

    Article  Google Scholar 

  13. Grotjahn, R., and Coauthors, 2016: North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 46, 1151–1184, https://doi.org/10.1007/s00382-015-2638-6.

    Article  Google Scholar 

  14. Guirguis, K., A. Gershunov, R. Schwartz, and S. Bennett, 2011: Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophys. Res. Lett., 38, L17701, https://doi.org/10.1029/2011GL048762.

    Article  Google Scholar 

  15. Higgins, R. W., and K. C. Mo, 1997: Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10, 223–244, https://doi.org/10.1175/1520-0442(1997)010<0223:PNPCAA>2.0.CO;2.

    Article  Google Scholar 

  16. Higgins, R. W., A. Leetmaa, and V. E. Kousky, 2002: Relationships between climate variability and winter temperature extremes in the United States. J. Climate, 15, 1555–1572, https://doi.org/10.1175/1520-0442(2002)015<1555:RBCVAW>2.0.CO;2.

    Article  Google Scholar 

  17. Hong, C.-C., and T. Li, 2009: The extreme cold anomaly over Southeast Asia in february 2008: Roles of ISO and ENSO. J. Climate, 22, 3786–3801, https://doi.org/10.1175/2009JCLI2864.1.

    Article  Google Scholar 

  18. Hoskins, B. J., 1996: On the existence and strength of the summer subtropical anticyclones. Bernhard Haurwitz memorial lecture. Bull. Amer. Meteorol. Soc., 77, 1287–1292.

    Google Scholar 

  19. Hoskins, B., R. Neale, M. Rodwell, and G.-Y. Yang, 1999: Aspects of the large-scale tropical atmospheric circulation. Tellus B, 51, 33–44, https://doi.org/10.3402/tellusb.v51i1.16258.

    Article  Google Scholar 

  20. Jeong, J.-H., C.-H. Ho, B.-M. Kim, and W.-T. Kwon, 2005: Influence of the Madden-Julian Oscillation on wintertime surface air temperature and cold surges in East Asia. J. Geophys. Res: Atmos., 110, D11104, https://doi.org/10.1029/2004JD005408.

    Article  Google Scholar 

  21. Jeong, J.-H., B.-M. Kim, C.-H. Ho, and Y.-H. Noh, 2008: Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. J. Climate, 21, 788–801, https://doi.org/10.1175/2007JCLI180L1.

    Article  Google Scholar 

  22. Jin, F. F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307–319, https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    Article  Google Scholar 

  23. Jones, C., J. Gottschalck, L. M. V. Carvalho, and W. Higgins, 2011: Influence of the Madden-Julian Oscillation on forecasts of extreme precipitation in the contiguous United States. Mon. Wea. Rev., 139, 332–350, https://doi.org/10.1175/2010MWR3512.1.

    Article  Google Scholar 

  24. Kenyon, J., and G. C. Hegerl, 2008: Influence of modes of climate variability on global temperature extremes. J. Climate, 21, 3872–3889, https://doi.org/10.1175/2008JCLI2125.1.

    Article  Google Scholar 

  25. Kiladis, G. N., and K. M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120, 1900–1923, https://doi.org/10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2.

    Article  Google Scholar 

  26. Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A Comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 1697–1715, https://doi.org/10.1175/MWR-D-13-0030L1.

    Article  Google Scholar 

  27. Lau, K.-M., and T. J. Phillips, 1986: Coherent fluctuations of fxtratropical geopotential height and tropical convection in in-traseasonal time scales. J. Atmos. Sci., 43, 1164–1181, https://doi.org/10.1175/1520-0469(1986)043<1164:CFOFGH>2.0.CO;2.

    Article  Google Scholar 

  28. Lee, H.-T., A. Gruber, R. G. Ellingson, and I. Laszlo, 2007: Development of the HIRS outgoing longwave radiation climate dataset. J. Atmos. Oceanic Technol., 24, 2029–2047, https://doi.org/10.1175/2007JTECHA989.1.

    Article  Google Scholar 

  29. Lee, Y.-Y., and R. X. Black, 2013: Boreal winter low-frequency variability in CMIP5 models. J. Geophys. Res.: Atmos. 118, 6891–6904, https://doi.org/10.1002/jgrd.50493.

    Google Scholar 

  30. Lee, Y.-Y., and R. Grotjahn, 2016: California central valley summer heat waves form two ways. J. Climate, 29, 1201–1217, https://doi.org/10.1175/JCLI-D-15-0270.1.

    Article  Google Scholar 

  31. Lim, Y.-K., and S. D. Schubert, 2011: The impact of ENSO and the Arctic Oscillation on winter temperature extremes in the southeast United States. Geophys. Res. Lett., 38, L15706, https://doi.org/10.1029/2011GL048283.

    Article  Google Scholar 

  32. Lin, H., and G. Brunet, 2009: The influence of the Madden-Julian oscillation on Canadian wintertime surface air temperature. Mon. Wea. Rev., 137, 2250–2262, https://doi.org/10.1175/2009MWR2831.1.

    Article  Google Scholar 

  33. Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic oscillation and the Madden-Julian Oscillation. J. Climate, 22, 364–380, https://doi.org/10.1175/2008JCLI2515.1.

    Article  Google Scholar 

  34. Lin, H., G. Brunet, and R. P. Mo, 2010: Impact of the Madden-Julian oscillation on wintertime precipitation in Canada. Mon. Wea. Rev., 138, 3822–3839, https://doi.org/10.1175/2010MWR3363.1.

    Article  Google Scholar 

  35. Loikith, P. C., and A. J. Broccoli, 2014: The influence of recurrent modes of climate variability on the occurrence of winter and summer extreme temperatures over North America. J. Climate, 27, 1600–1618, https://doi.org/10.1175/JCLI-D-13-00068.1.

    Article  Google Scholar 

  36. Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    Article  Google Scholar 

  37. Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation-A review. Mon. Wea. Rev., 122, 814–837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    Article  Google Scholar 

  38. Matsueda, S., and Y. Takaya, 2015: The global influence of the Madden-Julian oscillation on extreme temperature events. J. Climate, 28, 4141–4151, https://doi.org/10.1175/JCLI-D-14-00625.1.

    Article  Google Scholar 

  39. Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Japan Ser. II, 44, 25–43, https://doi.org/10.2151/jmsj1965.44.1_25.

    Article  Google Scholar 

  40. Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden-Julian oscillation during the northern winter. Quart. J. Roy. Meteorol. Soc., 130, 1991–2011, https://doi.org/10.1256/qj.02.123.

    Article  Google Scholar 

  41. Meehl, G. A., and H. Y. Teng, 2007: Multi-model changes in El Nino teleconnections over North America in a future warmer climate. Climate Dyn., 29, 779–790, https://doi.org/10.1007/s00382-007-0268-3.

    Article  Google Scholar 

  42. Moon, J.-Y., B. Wang, and K.-J. Ha, 2011: ENSO regulation of MJO teleconnection. Climate Dyn., 37, 1133–1149, https://doi.org/10.1007/s00382-010-0902-3.

    Article  Google Scholar 

  43. Mori, M., and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. J. Meteorol. Soc. Japan Ser. II, 86, 213–236, https://doi.org/10.2151/jmsj.86.213.

    Article  Google Scholar 

  44. Palipane, E., and R. Grotjahn, 2018: Future projections of the large-scale meteorology associated with California heat waves in CMIP5 models. J. Geophys. Res.: Atmos. 123, 8500–8517, https://doi.org/10.1029/2018JD029000.

    Google Scholar 

  45. Schreck, C. J., J. M. Cordeira, and D. Margolin, 2013: Which MJO events affect North American temperatures? Mon. Wea. Rev., 141, 3840–3850, https://doi.org/10.1175/MWR-D-13-00118.1.

    Article  Google Scholar 

  46. Sillmann, J., M. Croci-Maspoli, M. Kallache, and R. W. Katz, 2011: Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking. J. Climate, 24, 5899–5913, https://doi.org/10.1175/2011JCLI4075.1.

    Article  Google Scholar 

  47. Tyrrell, G. C., D. J. Karoly, and J. L. McBride, 1996: Links between tropical convection and variations of the extratropical circulation during TOGA COARE. J. Atmos. Sci., 53, 2735–2748, https://doi.org/10.1175/1520-0469(1996)053<2735:LBTCAV>2.0.CO;2.

    Article  Google Scholar 

  48. Walsh, J. E., A. S. Phillips, D. H. Portis, and W. L. Chapman, 2001: Extreme cold outbreaks in the United States and Europe, 1948–99. J. Climate, 14, 2642–2658, https://doi.org/10.1175/1520-0442(2001)014<2642:ECOITU>2.0.CO;2.

    Article  Google Scholar 

  49. Wang, S. G., D. Ma, A. H. Sobel, and M. K. Tippett, 2018: Propagation characteristics of BSISO indices. Geophys. Res. Lett., 45(18), 9934–9943, https://doi.org/10.1029/2018GL078321.

    Article  Google Scholar 

  50. Wettstein, J. J., and L. O. Mearns, 2002: The influence of the North Atlantic-Arctic Oscillation on mean, variance, and extremes of temperature in the Northeastern United States and Canada. J. Climate, 15, 3586–3600, https://doi.org/10.1175/1520-0442(2002)015<3586:TIOTNA>2.0.CO;2.

    Article  Google Scholar 

  51. Wheeler, M. C., and H. H. Hendon, 2004: An all-season realtime multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    Article  Google Scholar 

  52. Wheeler, M. C., H. H. Hendon, S. Cleland, H. Meinke, and A. Donald, 2009: Impacts of the Madden-Julian oscillation on Australian rainfall and circulation. J. Climate, 22, 1482–1498, https://doi.org/10.1175/2008JCLI2595.1.

    Article  Google Scholar 

  53. Zhang, C. D., 2005: Madden-julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

    Google Scholar 

  54. Zhou, S. T., M. L’Heureux, S. Weaver, and A. Kumar, 2012: A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States. Climate Dyn., 38, 1459–1471, https://doi.org/10.1007/s00382-011-1001-9.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded in part by the NSF (Grant No. 1236681), NASA (Grant No. NNX16AG62G), the Department of Energy Office of Science (Award No. DE-SC0016605), and the USDA National Institute of Food and Agriculture, Hatch project Accession #1010971. This research was also supported by the Asia-Pacific Economic Cooperation Climate Center in the Republic of Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard Grotjahn.

Additional information

Article Highlights

• Summertime California heat waves are preceded by MJO convection in the Indian Ocean and Southeast Asia and eastern tropical Pacific.

• In MJO phases 2-3 and 8-1, VP and OLR fields over California are part of a larger response extending into the subtropical eastern Pacific.

• Cluster 1 heat waves (that form in California) are more linked to MJO phases than Cluster 2 ones (from existing heat waves that expand over California).

Electronic supplementary material

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Grotjahn, R. Evidence of Specific MJO Phase Occurrence with Summertime California Central Valley Extreme Hot Weather. Adv. Atmos. Sci. 36, 589–602 (2019). https://doi.org/10.1007/s00376-019-8167-1

Download citation

Key words

  • MJO
  • heat wave
  • large-scale meteorological pattern
  • extratropical response
  • tropical convection

关键词

  • MJO
  • 热浪
  • 大尺度环流型
  • 赤道外响应
  • 热带对流