Skip to main content

Causes of the Extreme Hot Midsummer in Central and South China during 2017: Role of the Western Tropical Pacific Warming

Abstract

This study investigates why an extreme hot midsummer occurred in Central and South China (CSC) during 2017. It is shown that the western North Pacific subtropical high (WNPSH) was abnormally intensified and westward-extending, resulting in anomalous high pressure and consequent extreme heat over CSC. The abnormal WNPSH was favored by the warming of the western tropical Pacific (WTP), which was unrelated to ENSO and manifested its own individual effect. The WTP warming enhanced the convection in-situ and led to anomalous high pressure over CSC via a local meridional circulation. The influence of the WTP was confirmed by CAM4 model experiments. A comparison between the 2017 midsummer and 2010 midsummer (with a stronger WNPSH but weaker extreme heat) indicated that the influence of the WNPSH on extreme heat can be modulated by the associated precipitation in the northwestern flank.

The role of the WTP was verified by regression analyses on the interannual variation of the WTP sea surface temperature anomaly (SSTA). On the other hand, the WTP has undergone prominent warming during the past few decades, resulting from decadal to long-term changes and favoring extreme warm conditions. Through a mechanism similar to the interannual variation, the decadal to long-term changes have reinforced the influence of WTP warming on the temperature over CSC, contributing to the more frequent hot midsummers recently. It is estimated that more than 50% of the temperature anomaly over CSC in the 2017 midsummer was due to the WTP warming, and 40% was related to the decadal to long-term changes of the WTP SSTA.

概要

2017年盛夏7-8月中国南方地区出现了大范围高温. 同时, 热带西太平洋海温异常偏暖, 而热带中东太平洋海温异常信号弱, 因此, 2017年暖夏可以体现热带西太平洋暖海温对高温的单独影响. 热带西太平洋暖海温有利于加强局地对流, 并进一步激发异常的局地经圈环流, 其下沉支使西太副高西伸加强, 在中国南方上空形成反气旋式异常, 从而有利于高温发生. 热带西太平洋暖海温的作用在CAM4模式数值试验中也得到了验证. 事实上, 西太副高的强度在2010年达到最强, 但2010盛夏的高温频次不如2017年多, 这是因为西太副高对高温的影响还受到副高西北侧降水的调节.

基于热带西太平洋海温的年际变化序列进行回归分析, 结果也表明热带西太平洋海温对中国南方盛夏温度有显著影响. 另一方面, 热带西太平洋在过去几十年呈现明显的增温, 其中包含年代际变化和长期变化趋势. 热带西太平洋在年代际和长期变化时间尺度上的增暖有利于极端暖位相的出现, 并且通过与年际分量类似的物理过程对中国南方温度产生影响, 因而有利于近年来高温的频繁发生. 根据回归方程估算, 2017年盛夏中国南方的温度异常有50%来自热带西太平洋暖海温的贡献, 其中40%与热带西太平洋海温的年代际和长期增暖趋势有关.

This is a preview of subscription content, access via your institution.

References

  1. Baldi, M., G. Dalu, G. Maracchi, M. Pasqui, and F. Cesarone, 2006: Heat waves in the Mediterranean: A local feature or a larger-scale effect? International Journal of Climatology, 26, 1477–1487, https://doi.org/10.1002/joc.1389.

    Article  Google Scholar 

  2. Black, E., M. Blackburn, G. Harrison, B. Hoskins, and J. Methven, 2004: Factors contributing to the summer 2003 European heatwave. Weather, 59, 217–223, https://doi.org/10.1256/wea.74.04.

    Article  Google Scholar 

  3. Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957–960, https://doi.org/10.1126/science.275.5302.957.

    Article  Google Scholar 

  4. Chen, R. D., and R. Y. Lu, 2015: Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China. J. Climate, 28, 5830–5844, https://doi.org/10.1175/JCLI-D-14-00818.1.

    Article  Google Scholar 

  5. Chen, R. D., Z. P. Wen, and R. Y. Lu, 2016: Evolution of the circulation anomalies and the quasi-biweekly oscillations associated with extreme heat events in southern China. J. Climate, 29, 6909–6921, https://doi.org/10.1175/JCLI-D-16-0160.1.

    Article  Google Scholar 

  6. Chen, R. D., Z. P. Wen, and R. Y. Lu, 2018a: Interdecadal change on the relationship between the mid-summer temperature in South China and atmospheric circulation and sea surface temperature. Climate Dyn., 51, 2113–2126, https://doi.org/10.1007/s00382-017-4002-5.

    Article  Google Scholar 

  7. Chen, R. D., Z. P. Wen, and R. Y. Lu, 2018b: Large-scale circulation anomalies and intraseasonal oscillations associated with long-lived extreme heat events in South China. J. Climate, 31, 213–232, https://doi.org/10.1175/JCLI-D-17-0232.1.

    Article  Google Scholar 

  8. Chen, W., and R. Y. Lu, 2014: A decadal shift of summer surface air temperature over Northeast Asia around the mid-1990s. Adv. Atmos. Sci., 31, 735–742, https://doi.org/10.1007/s00376-013-3154-4.

    Article  Google Scholar 

  9. Chen, X. L., and T. J. Zhou, 2018: Relative contributions of external SST forcing and internal atmospheric variability to July–August heat waves over the Yangtze River valley. Climate Dyn., 51, 4403–4419, https://doi.org/10.1007/s00382-017-3871-y.

    Article  Google Scholar 

  10. Chen, Z. S., Z. P. Wen, R. G. Wu, X. B. Lin, and J. B. Wang, 2016: Relative importance of tropical SST anomalies in maintaining the Western North Pacific anomalous anticyclone during El Ni˜no to La Ni˜na transition years. Climate Dyn., 46, 1027–1041, https://doi.org/10.1007/s00382-015-2630-1.

    Article  Google Scholar 

  11. Cravatte, S., T. Delcroix, D. X. Zhang, M. McPhaden, and J. Leloup, 2009: Observed freshening and warming of the western Pacific Warm Pool. Climate Dyn., 33, 565–589, https://doi.org/10.1007/s00382-009-0526-7.

    Article  Google Scholar 

  12. Freychet, N., S. Sparrow, S. F. B. Tett, M. J. Mineter, G. C. Hegerl, and D. C. H. Wallom, 2018: Impacts of anthropogenic forcings and El Ni˜no on Chinese extreme temperatures. Adv. Atmos. Sci., 35, 994–1002, https://doi.org/10.1007/s00376-018-7258-8.

    Article  Google Scholar 

  13. Gao, M. N., J. Yang, B. Wang, S. Y. Zhou, D. Y. Gong, and S. J. Kim, 2018: How are heat waves over Yangtze River valley associated with atmospheric quasi-biweekly oscillation? Climate Dyn., 51, 4421–4437, https://doi.org/10.1007/s00382-017-3526-z.

    Article  Google Scholar 

  14. He, C., T. J. Zhou, A. L. Lin, B. Wu, D. J. Gu, C. H. Li, and B. Zheng, 2015: Enhanced or weakened western North Pacific subtropical high under global warming? Scientific Reports, 5, 16771, https://doi.org/10.1038/srep16771.

    Article  Google Scholar 

  15. Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8197–8205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    Google Scholar 

  16. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  17. Kidwell, A., L. Han, Y. H. Jo, and X. H. Yan, 2017: Decadal western Pacific warm pool variability: A centroid and heat content study. Scientific Reports, 7, 13141, https://doi.org/10.1038/s41598-017-13351-x.

    Article  Google Scholar 

  18. Kwon, M., J. G. Jhun, and K. J. Ha, 2007: Decadal change in East Asian summer monsoon circulation in the mid-1990s. Geophys. Res. Lett., 34, L21706, https://doi.org/10.1029/2007GL031977.

    Article  Google Scholar 

  19. Lee, S. S., Y. W. Seo, K. J. Ha, and J. G. Jhun, 2013: Impact of the western North Pacific subtropical high on the East Asian monsoon precipitation and the Indian Ocean precipitation in the boreal summertime. Asia-Pacific Journal of Atmospheric Sciences, 49, 171–182, https://doi.org/10.1007/s13143-013-0018-x.

    Article  Google Scholar 

  20. Li, J. N., W. G. Meng, A. Y. Wang, L. M. Liu, R. Q. Feng, and E. B. Hou, 2003: Climatic characteristics of the intensity and position of the subtropical high in the western Pacific. Tropical Geography, 23, 35–39, https://doi.org/10.3969/j.issn.1001-5221.2003.01.008. (in Chinese with English abstract)

    Google Scholar 

  21. Lin, J., B. G. Bi, and J. H. He, 2005: Physical mechanism responsible for western Pacific subtropical high variation and hot wave in southern China in July 2003. Chinese Journal of Atmospheric Sciences, 29, 594–599, https://doi.org/10.3878/j.issn.1006-9895.2005.04.10. (in Chinese with English abstract)

    Google Scholar 

  22. Liu, Z. Y., and B. Y. Huang, 2000: Cause of tropical Pacific warming trend. Geophys. Res. Lett., 27, 1935–1938, https://doi.org/10.1029/1999GL006093.

    Article  Google Scholar 

  23. Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 7266–7281, https://doi.org/10.1175/JCLI-D-11-00709.1.

    Article  Google Scholar 

  24. Luo, M., and N. C. Lau, 2017: Heat waves in southern China: Synoptic behavior, long-term change, and urbanization effects. J. Climate, 30, 703–720, https://doi.org/10.1175/JCLI-D-16-0269.1.

    Article  Google Scholar 

  25. Luo, M., and N. C. Lau, 2018: Amplifying effect of ENSO on heat waves in China. Climate Dyn., https://doi.org/10.1007/s00382-018-4322-0.

    Google Scholar 

  26. Ma, S. M., T. J. Zhou, D. A. Stone, O. Angélil, and H. Shiogama, 2017: Attribution of the July-August 2013 heat event in Central and Eastern China to anthropogenic greenhouse gas emissions. Environmental Research Letters, 12, 054020, https://doi.org/10.1088/1748-9326/aa69d2.

    Article  Google Scholar 

  27. Neale, R. B., J. Richter, S. Park, H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. H. Zhang, 2013: The mean climate of the community atmosphere model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 5150–5168, https://doi.org/10.1175/JCLI-D-12-00236.1.

    Article  Google Scholar 

  28. Qian, C., 2016: On trend estimation and significance testing for non-Gaussian and serially dependent data: Quantifying the urbanization effect on trends in hot extremes in the megacity of Shanghai. Climate Dyn., 47, 329–344, https://doi.org/10.1007/s00382-015-2838-0.

    Article  Google Scholar 

  29. Qian, C., W. Zhou, S. K. Fong, and K. C. Leong, 2015: Two approaches for statistical prediction of non-Gaussian climate extremes: A case study of Macao hot extremes during 1912–2012. J. Climate, 28, 623–636, https://doi.org/10.1175/JCLID-14-00159.1.

    Article  Google Scholar 

  30. Qian, C., Z. W. Yan, L. J. Cao, and Z. Li, 2018a: Climatic changes in the Twenty-four Solar Terms based on temperature observations back to 1873. Climatic and Environmental Research, 23, 670–682, https://doi.org/10.3878/j.issn.1006-9585.2018.18044. (in Chinese with English abstract)

    Google Scholar 

  31. Qian, C., W. Zhou, X. Q. Yang, and J. C. L. Chan, 2018b: Statistical prediction of non-Gaussian climate extremes in urban areas based on the first-order difference method. International Journal of Climatology, 38, 2889–2898, https://doi.org/10.1002/joc.5464.

    Article  Google Scholar 

  32. Ren, X. J., X. Q. Yang, and X. G. Sun, 2013: Zonal oscillation of western Pacific subtropical high and subseasonal SST variations during Yangtze persistent heavy rainfall events. J. Climate, 26, 8929–8946, https://doi.org/10.1175/JCLI-D-12-00861.1.

    Article  Google Scholar 

  33. Su, J. Z., R. H. Zhang, and H. J. Wang. 2017: Consecutive recordbreaking high temperatures marked the handover from hiatus to accelerated warming. Scientific Reports, 7, 43735, https://doi.org/10.1038/srep43735.

    Article  Google Scholar 

  34. Sui, C. H., P. H. Chung, and T. Li, 2007: Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett., 34, L11701, https://doi.org/10.1029/2006GL029204.

    Article  Google Scholar 

  35. Sun, J. H., H. Chen, S. X. Zhao, Q. C. Zeng, Z. Xie, J. L. Cui, and H. T. Liu, 1999: A study on the severe hot weather in Beijing and North China Part II. Simulation and analysis. Climatic and Environmental Research, 4, 334–345, https://doi.org/10.3878/j.issn.1006-9585.1999.04.02. (in Chinese with English abstract)

    Google Scholar 

  36. Sun, Y., X. B. Zhang, F. W. Zwiers, L. C. Song, H. Wan, T. Hu, H. Yin, and G. Y. Ren, 2014: Rapid increase in the risk of extreme summer heat in Eastern China. Nature Climate Change, 4, 1082–1085, https://doi.org/10.1038/nclimate2410.

    Article  Google Scholar 

  37. Tan, G. R., and Z. B. Sun, 2004: Relationship of the subtropical high and summertime floods/droughts over North China. Journal of Tropical Meteorology, 20, 206–211, https://doi.org/10.3969/j.issn.1004-4965.2004.02.013. (in Chinese with English abstract)

    Google Scholar 

  38. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    Article  Google Scholar 

  39. Wang, P. Y., J. P. Tang, X. G. Sun, S. Y. Wang, J. Wu, X. N. Dong, and J. Fang, 2017: Heat waves in China: Definitions, leading patterns, and connections to large-scale atmospheric circulation and SSTs. J. Geophys. Res., 122, 10 679–10 699, https://doi.org/10.1002/2017JD027180.

    Google Scholar 

  40. Wang, W. W., W. Zhou, Y. Li, X. Wang, and D. X. Wang, 2015a: Statistical modeling and CMIP5 simulations of hot spell changes in China. Climate Dyn., 44, 2859–2872, https://doi.org/10.1007/s00382-014-2287-1.

    Article  Google Scholar 

  41. Wang, W. W.,W. Zhou, S. K. Fong, K. C. Leong, I. M. Tang, S. W. and W. K. Leong, 2015b: Extreme rainfall and summer heat waves in Macau based on statistical theory of extreme values. Climate Research, 66, 91–101, https://doi.org/10.3354/cr01336.

    Article  Google Scholar 

  42. Wang, W. W., W. Zhou, X. Z. Li, X. Wang, and D. X. Wang, 2016: Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Climate Dyn., 46, 2923–2941, https://doi.org/10.1007/s00382-015-2741-8.

    Article  Google Scholar 

  43. Wei, K., and W. Chen, 2009: Climatology and trends of high temperature extremes across China in summer. Atmospheric and Oceanic Science Letters, 2, 153–158, https://doi.org/10.1080/16742834.2009.11446795.

    Article  Google Scholar 

  44. Xia, J. J., K. Tu, Z. W. Yan, and Y. J. Qi, 2016: The super-heat wave in eastern China during July–August 2013: A perspective of climate change. International Journal of Climatology, 36, 1291–1298, https://doi.org/10.1002/joc.4424.

    Article  Google Scholar 

  45. Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    Article  Google Scholar 

  46. Yan, Z. W., J. J. Xia, C. Qian, and W. Zhou, 2011: Changes in seasonal cycle and extremes in China during the period 1960–2008. Adv. Atmos. Sci., 28, 269–283, https://doi.org/10.1007/s00376-010-0006-3.

    Article  Google Scholar 

  47. Yang, H., and S. Q. Sun, 2003: Longitudinal displacement of the subtropical high in the western Pacific in summer and its influence. Adv. Atmos. Sci., 20, 921–933, https://doi.org/10.1007/BF02915515.

    Article  Google Scholar 

  48. Zhang, L., and X. F. Zhi, 2010: South Asian high and the subtropical western Pacific high and its relation to the mid-summer precipitation anomalies over China. Scientia Meteorologica Sinica, 30, 438–444, https://doi.org/10.3969/j.issn.1009-0827.2010.04.002. (in Chinese with English abstract)

    Google Scholar 

  49. Zhang, S. Y., S. R. Wang, Y. S. Zhang, D. K. Zhang, and Y. L. Song, 2004: The climatic character of high temperature and the prediction in the large cities of east of China. Journal of Tropical Meteorology, 20, 750–760, https://doi.org/10.3969/j.issn.1004-4965.2004.06.017. (in Chinese with English abstract)

    Google Scholar 

  50. Zhou, W., J. C. L. Chan, 2005: Intraseasonal oscillations and the South China Sea summer monsoon onset. International Journal of Climatology, 25, 1585–1609, https://doi.org/10.1002/joc.1209.

    Article  Google Scholar 

  51. Zhu, C. W., B. Wang, W. H. Qian, and B. Zhang, 2012: Recent weakening of northern East Asian summer monsoon: A possible response to global warming. Geophys. Res. Lett., 39, L09701, https://doi.org/10.1029/2012GL051155.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two reviewers for their helpful comments and suggestions. This work was jointly supported by National Key R&D Program of China (Grant No. 2016YFA0600601), the National Natural Science Foundation of China (Grant Nos. 41605027, 41721004, 41530530 and 41731173), the Leading Talents of Guangdong Province Program, the Pioneer Hundred Talents Program of the Chinese Academy of Sciences, and the Fundamental Research Funds for the Central Universities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruidan Chen.

Additional information

Article Highlights

• The abnormally intensified WNPSH that caused the extreme heat over CSC in 2017 was favored by the WTP warming.

• The influence of the WNPSH on such extreme heat can be modulated by the associated precipitation in the northwestern flank.

• The decadal to long-term changes of the WTP SSTA have contributed prominently to the extreme heat over CSC.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Wen, Z., Lu, R. et al. Causes of the Extreme Hot Midsummer in Central and South China during 2017: Role of the Western Tropical Pacific Warming. Adv. Atmos. Sci. 36, 465–478 (2019). https://doi.org/10.1007/s00376-018-8177-4

Download citation

Key words

  • hot midsummer
  • Central and South China
  • western tropical Pacific
  • decadal to long-term changes

关键词

  • 盛夏高温
  • 中国南方
  • 热带西太平洋
  • 年代际和长期变化