Chen, F., and Z. H. Xie, 2011: Effects of crop growth and development on land surface fluxes. Adv. Atmos. Sci., 28(4), 927–944, https://doi.org/10.1007/s00376-010-0105-1.
Article
Google Scholar
Chen, F., and Z. H. Xie, 2012: Effects of crop growth and development on regional climate: A case study over East Asian monsoon area. Climate Dyn., 38, 2291–2305, https://doi.org/10.1007/s00382-011-1125-y.
Article
Google Scholar
Chen, F., and Z. H. Xie, 2013: An evaluation of RegCM3 CERES for regional climate modeling in China. Adv. Atmos. Sci., 30(4), 1187–1200, https://doi.org/10.1007/s00376-012-2114-8.
Article
Google Scholar
de Noblet-Ducoudré, N., S. Gervois, P. Ciais, N. Viovy, N. Bresson, B. Seguin, and A. Perrier, 2004: Coupling the soilvegetation-atmosphere-transfer scheme ORCHIDEE to the agronomy model STICS to study the influence of croplands on the European carbon and water budgets. Agronomie, 24, 397–407, https://doi.org/10.1051/agro:2004038.
Article
Google Scholar
Gao, X. J., Y. Shi, and F. Giorgi, 2016: Comparison of convective parameterizations in RegCM4 experiments over China with CLM as the land surface model. Atmospheric and Oceanic Science Letters, 9(4), 246–254, https://doi.org/10.1080/16742834.2016.1172938.
Article
Google Scholar
Gao, X. J., Y. Shi, Z. Y. Han, M. L. Wang, J. Wu, D. F. Zhang, Y. Xu, and F. Giorgi, 2017: Performance of RegCM4 over major river basins in China. Adv. Atmos. Sci., 34(4), 441–455, https://doi.org/10.1007/s00376-016-6179-7.
Article
Google Scholar
Gervois, S., N. de Noblet-Ducoudré, N. Viovy, and P. Ciais, 2004: Including croplands in a global biosphere model: Methodology and evaluation at specific sites. Earth Interactions, 8(16), 1–25, https://doi.org/10.1175/1087-3562(2004)8<1:ICIAGB>2.0.CO;2.
Article
Google Scholar
Giorgi, F., and R. O. Anyah, 2012: The road towards RegCM4. Climate Res., 52, 3–6, https://doi.org/10.3354/cr01089.
Article
Google Scholar
Giorgi, F., M. Marinucci, G. T. Bates, and G. de Canio, 1993: Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 2814–2832, https://doi.org/10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2.
Google Scholar
Jones, C. A., and J. R. Kiniry, 1986: CERES-Maize: A Simulation Model of Maize Growth and Development. TexasA&M University Press, 194 pp.
Google Scholar
Kiniry, J. R., and Coauthors, 1997: Evaluation of two maize models for nine U. S. locations. Agronomy Journal, 89, 421–426, https://doi.org/10.2134/agronj1997.00021962008900030009x.
Article
Google Scholar
Lawrence, P. J., and T. N. Chase, 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3. 0). J. Geophys. Res., 112: G01023, https://doi.org/10.1029/2006JG000168.
Google Scholar
Lei, H., D. Yang, E. Lokupitiya, and Y. Shen, 2010: Coupling land surface and crop growth models for predicting evapotranspiration and carbon exchange in wheat-maize rotation croplands. Biogeosciences, 7, 3363–3375, https://doi.org/10.5194/bg-7-3363-2010.
Google Scholar
Levis, S., G. B. Bonan, M. Vertenstein, and K. W. Oleson, 2004: The Community land model’s dynamic global vegetation model (CLM-DGVM): Technical description and user’s guide. NCAR Technical Note NCAR/TN-459+IA, 50 pp.
Google Scholar
Levis, S., G. B. Bonan, E. Kluzek, P. E. Thornton, A. Jones, W. J. Sacks, and C. J. Kucharik, 2012: Interactive crop management in the Community Earth System Model (CESM1): Seasonal influences on land-atmosphere fluxes. J. Climate, 25, 4839–4859, https://doi.org/10.1175/JCLI-D-11-00446.1.
Article
Google Scholar
Li, S., T. J. Wang, B. L. Zhuang, and Y. Han, 2009: Indirect radiative forcing and climatic effect of the anthropogenic nitrate aerosol on regional climate of China. Adv. Atmos. Sci., 26(3), 543–552, https://doi.org/10.1007/s00376-009-0543-9.
Article
Google Scholar
Li, Y., J. Zhou, W. Kinzelbach, G. D. Cheng, X. Li, and W. Z. Zhao, 2013: Coupling a SVAT heat and water flow model, a stomatal-photosynthesis model and a crop growth model to simulate energy, water and carbon fluxes in an irrigated maize ecosystem. Agricultural and Forest Meteorology, 176, 10–24, https://doi.org/10.1016/j.agrformet.2013.03.004.
Article
Google Scholar
Lokupitiya, E., and Coauthors, 2009: Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands. Biogeo sciences, 6, 969–986, https://doi.org/10.5194/bg-6-969-2009.
Article
Google Scholar
Lu, Y. Q., J. M. Jin, and L. M. Kueppers, 2015: Crop growth and irrigation interact to influence surface fluxes in a regional climate-cropland model (WRF3. 3-CLM4crop). Climate Dyn., 45(11–12), 3347–3363, https://doi.org/10.1007/s00382-015-2543-z.
Article
Google Scholar
Maruyama, A., and T. Kuwagata, 2010: Coupling land surface and crop growth models to estimate the effects of changes in the growing season on energy balance and water use of rice paddies. Agricultural and Forest Meteorology, 150, 919–930.
Article
Google Scholar
McPherson, R. A., D. J. Stensrud, and K. C. Crawford, 2004: The impact of Oklahoma’s winter wheat belt on the mesoscale environment. Mon. Wea. Rev., 132, 405–421, https://doi.org/10.1175/1520-0493(2004)132<0405:TIOOWW>2.0.CO;2.
Article
Google Scholar
Oleson, K. W., and Coauthors, 2004: Technical description of the community land model (CLM). NCAR Technical Note NCAR/TN-461+STR, 174 pp, https://doi.org/10.5065/D6N877R0.
Google Scholar
Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113: G01021, https://doi.org/10.1029/2007JG000563.
Google Scholar
Osborne, T., J. Slingo, D. Lawrence, and T. Wheeler, 2009: Examining the interaction of growing crops with local climate using a coupled crop-climate model. J. Climate, 22, 1393–1411, https://doi.org/10.1175/2008JCLI2494.1.
Article
Google Scholar
Pang, X. P., J. Letey, and L. Wu, 1997: Yield and nitrogen uptake prediction by CERES-Maize model under semiarid conditions. Soil Science Society of America Journal, 61, 254–256, https://doi.org/10.2136/sssaj1997.03615995006100010035x.
Article
Google Scholar
Prince, S. D., J. Haskett, M. Steininger, H. Strand, and R. Wright, 2001: Net primary production of U. S. Midwest croplands from agricultural harvest yield data. Ecological Applications, 11, 1194–1205, https://doi.org/10.1890/1051-0761(2001)011[1194:NPPOUS]2.0.CO;2.
Google Scholar
Qin, P. H., Z. H. Xie, and X. Yuan, 2013: Incorporating groundwater dynamics and surface/subsurface runoff mechanisms in regional climate modeling over river basins in China. Adv. Atmos. Sci., 30(4), 983–996, https://doi.org/10.1007/s00376-012-2095-7.
Article
Google Scholar
Tsarouchi, G. M., W. Buytaert, and A. Mijic, 2014: Coupling a land-surface model with a crop growth model to improve ET flux estimations in the Upper Ganges basin, India. Hydrology and Earth System Sciences, 18, 4223–4238, https://doi.org/10.5194/hess-18-4223-2014.
Article
Google Scholar
Tsuji, G. Y., G. Hoogenboom, and P. K. Thornton, 1998: Understanding Options for Agricultural Production. Springer, Dordrecht, 399 pp, https://doi.org/10.1007/978-94-017-3624-4.
Book
Google Scholar
Tsvetsinskaya, E. A., L. O. Mearns, and W. E. Easterling, 2001: Investigating the effect of seasonal plant growth and development in three-dimensional atmospheric simulations. Part II: Atmospheric response to crop growth and development. J. Climate, 14, 711–729, https://doi.org/10.1175/1520-0442(2001)014<0711:ITEOSP>2.0.CO;2.
Google Scholar
Twine, T. E., C. J. Kucharik, and J. A. Foley, 2004: Effects of land cover change on the energy and water balance of the Mississippi River Basin. Journal of Hydrometeorology, 5(4), 640–655, https://doi.org/10.1175/1525-7541(2004)005<0640:EOLCCO>2.0.CO;2.
Article
Google Scholar
Van den Hoof, C., E. Hanert, and P. L. Vidale, 2011: Simulating dynamic crop growth with an adapted land surface model-JULES-SUCROS: Model development and validation. Agricultural and Forest Meteorology, 151, 137–153, https://doi.org/10.1016/j.agrformet.2010.09.011.
Article
Google Scholar
Wang, X. J., G. J. Pang, M. X. Yang, and G. N. Wan, 2016: Effects of modified soil water-heat physics on RegCM4 simulations of climate over the Tibetan Plateau. J. Geophys. Res., 121(12), 6692–6712, https://doi.org/10.1002/2015JD024407.
Google Scholar
Xie, J. B., Y. J. Zeng, M. H. Zhang, and Z. H. Xie, 2016: Detection and attribution of the influence of climate change and human activity on hydrological cycle in China’s eastern monsoon area. Climatic and Environmental Research, 21(1), 87–98, https://doi.org/10.3878/j.issn.1006-9585.2015.15097. (in Chinese with English abstract)
Google Scholar
Yao, F. M., Y. L. Xu, E. D. Lin, M. Yokozawa, and J. H. Zhang, 2007: Assessing the impacts of climate change on rice yields in the main rice areas of China. Climatic Change, 80, 395–409, https://doi.org/10.1007/s10584-006-9122-6.
Article
Google Scholar
Zhang, F. C., D. H. Wang, and B. J. Qiu, 1987: Agricultural Phenology Atlas of China. Science Press, 202 pp. (in Chinese)
Google Scholar
Zou, J., and Z. H. Xie, 2012: The effects of the land-surface process parameterization of the RegCM4 on climate simulation in East Asia. Acta Meteorologica Sinica, 70(6), 1312–1326, https://doi.org/10.11676/qxxb2012.110. (in Chinese with English abstract)
Google Scholar