Skip to main content

Aerosol Data Assimilation Using Data from Fengyun-3A and MODIS: Application to a Dust Storm over East Asia in 2011

Abstract

Aerosol optical depth (AOD) is the most basic parameter that describes the optical properties of atmospheric aerosols, and it can be used to indicate aerosol content. In this study, we assimilated AOD data from the Fengyun-3A (FY-3A) and MODIS meteorological satellite using the Gridpoint Statistical Interpolation three-dimensional variational data assimilation system. Experiments were conducted for a dust storm over East Asia in April 2011. Each 0600 UTC analysis initialized a 24-hWeather Research and Forecasting with Chemistry model forecast. The results generally showed that the assimilation of satellite AOD observational data can significantly improve model aerosol mass prediction skills. The AOD distribution of the analysis field was closer to the observations of the satellite after assimilation of satellite AOD data. In addition, the analysis resulting from the experiment assimilating both FY-3A/MERSI (Medium-resolution Spectral Imager) AOD data and MODIS AOD data had closer agreement with the ground-based values than the individual assimilation of the two datasets for the dust storm over East Asia. These results suggest that the Chinese FY-3A satellite aerosol products can be effectively applied to numerical models and dust weather analysis.

摘要

气溶胶光学厚度(Aerosol Optical Depth, AOD)是表征大气气溶胶光学特征的最基本量, 并且可以用来推算大气气溶胶含量. 本研究使用GSI三维变分同化系统, 同化了风云3A(FY-3A)和MODIS两种卫星的气溶胶数据, 并应用在2011年4月东亚一次沙尘过程中. 研究中将每天06时(UTC)作为同化时刻, 用WRF-Chem(Weather Research and Forecasting with Chemistry model)模式向后积分24小时. 结果表明, 同化卫星观测数据能够显著提高模式预报能力. 同化试验后, 分析场的AOD分布更接近卫星观测场. 此外, 在本次沙尘个例研究中, 通过试验对比发现, 同时同化FY-3A与MODIS两种卫星数据的试验结果比单独同化时更接近地面观测数据. 以上结果表明, 我国FY-3A卫星气溶胶数据产品在数值模式及空气质量预报中具有广泛的应用前景, 对于我国风云系列卫星气溶胶产品的应用和推广具有一定的积极指示意义.

This is a preview of subscription content, access via your institution.

References

  1. Adhikary, B., and Coauthors, 2008: A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique. Atmos. Environ., 42, 8600–8615, https://doi.org/10.1016/j.atmosenv.2008.08.031.

    Article  Google Scholar 

  2. Bai, X. P., H. Li, D. Fang, F. Hu, F. Costabile, and F. J. Wang, 2007: Applications of data assimilation in air quality prediction. Advances in Earth Science, 22, 66–73, https://doi.org/10.3321/j.issn:1001-8166.2007.01.009. (in Chinese with English abstract)

    Google Scholar 

  3. Barker, D., and Coauthors, 2012: The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bull. Amer. Meteor. Soc., 93, 831–843, https://doi.org/10.1175/BAMS-D-11-00167.1.

    Article  Google Scholar 

  4. Benedetti, A., and M. Fisher, 2007: Background error statistics for aerosols. Quart. J. Roy. Meteor. Soc., 133, 391–405, https://doi.org/10.1002/qj.37.

    Article  Google Scholar 

  5. Che, H., and Coauthors, 2014: Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on groundbased sunphotometer measurements. Atmospheric Chemistry and Physics, 14, 2125–2138, https://doi.org/10.5194/acp-14-2125-2014.

    Article  Google Scholar 

  6. Che, H., and Coauthors, 2015: Ground-based aerosol climatology of China: Aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmospheric Chemistry and Physics, 15, 7619–7652, https://doi.org/10.5194/acp-15-7619-2015.

    Article  Google Scholar 

  7. Che, H. Z., and Coauthors, 2009: Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network. J. Geophys. Res., 114, D03206, https://doi.org/10.1029/2008JD011030.

    Article  Google Scholar 

  8. Chin, M., R. B. Rood, S. J. Lin, J. F. Müller, and A. M. Thompson, 2000: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res., 105, 24 671–24 687, https://doi.org/10.1029/2000JD900384.

    Article  Google Scholar 

  9. Collins, W. D., P. J. Rasch, B. E. Eaton, B. V. Khattatov, J. F. Lamarque, and C. S. Zender, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 106, 7313–7336, https://doi.org/10.1029/2000JD900507.

    Article  Google Scholar 

  10. Deng, Y. J., M. Hu, C. Y. Lin, and J. Cao, 2016: Analysis of aerosol optical depth in Guangdong based on FY3A/MERSI data. Meteorological Monthly, 42, 61–66, https://doi.org/10.7519/j.issn.1000-0526.2016.01.007. (in Chinese with English abstract)

    Google Scholar 

  11. Guan, Y. H., G. Q. Zhou, and W. S. Lu, 2011: The effect of the initial conditions after data assimilation on short-term climate prediction. Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 3, 331–340, https://doi.org/10.3969/j.issn.1674-7070.2011.04.004. (in Chinese with English abstract)

    Google Scholar 

  12. Holben, B. N., and Coauthors, 1998: AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5.

    Article  Google Scholar 

  13. Hsu, N. C., S. C. Tsay, M. D. King, and J. R. Herman, 2004: Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens., 42, 557–569, https://doi.org/10.1109/TGRS.2004.824067.

    Article  Google Scholar 

  14. Hsu, N. C., S. C. Tsay, M. D. King, and J. R. Herman, 2006: Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans. Geosci. Remote Sens., 44, 3180–3195, https://doi.org/10.1109/TGRS.2006.879540.

    Article  Google Scholar 

  15. Huebert, B. J., T. Bates, P. B. Russell, G. Y. Shi, Y. J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima, 2003: An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res., 108, 8633, https://doi.org/10.1029/2003JD003550.

    Article  Google Scholar 

  16. Jacobson, M. Z., 2001: GATOR-GCMM: A global- through urbanscale air pollution and weather forecast model: 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, sea ice, and snow. J. Geophys. Res., 106, 5385–5401, https://doi.org/10.1029/2000JD900560.

    Article  Google Scholar 

  17. Kahnert, M., 2008: Variational data analysis of aerosol species in a regional CTM: Background error covariance constraint and aerosol optical observation operators. Tellus B: Chemical and Physical Meteorology, 60, 753–770, https://doi.org/10.1111/j.1600-0889.2008.00377.x.

    Article  Google Scholar 

  18. Kaufman, Y. J., D. Tanré, and O. Boucher, 2002: A satellite view of aerosols in the climate system. Nature, 419, 215–223, https://doi.org/10.1038/nature01091.

    Article  Google Scholar 

  19. Kukkonen, J., and Coauthors, 2011: A review of operational, regional-scale, chemical weather forecasting models in Europe. Atmospheric Chemistry and Physics, 12, 1–87, https://doi.org/10.5194/acpd-11-5985-2011.

    Article  Google Scholar 

  20. Lai, X., F. M. Yang, and K. B. He, 2016: The impacts of atmospheric aerosols on weather and climate. Ecology and Environmental Monitoring of Three Gorges, 1, 2–8, https://doi.org/10.3969/j.issn.2096-2347.2016.01.002. (in Chinese with English abstract)

    Google Scholar 

  21. Li, X. J., P. Zhang, H. Qiu, and C. L. Fu, 2008: Introduction of MERSI/FY-3A land aerosol products. China Meteorological Society, Beijing. (in Chinese)

    Google Scholar 

  22. Lin, J. T., A. Van Donkelaar, J. Y. Xin, H. Z. Che, and Y. S. Wang, 2014: Clear-sky aerosol optical depth over East China estimated from visibility measurements and chemical transport modeling. Atmos. Environ., 95, 258–267, https://doi.org/10.1016/j.atmosenv.2014.06.044.

    Article  Google Scholar 

  23. Liu, Z. Q., Q. L. Liu, H. C. Lin, C. S. Schwartz, Y. H. Lee, and T. J. Wang, 2011: Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia. J. Geophys. Res., 116, D23206, https://doi.org/10.1029/2011JD016159.

    Google Scholar 

  24. Lorenc, A. C., 1986: Analysis method for numerical weather prediction, Q. Meteorol. Soc., 112, 1177–1194, https://doi.org/10.1002/qj.49711247414.

    Article  Google Scholar 

  25. Nieradzik, L. P., and H. Elbern, 2006: Variational assimilation of combined satellite retrieved and in situ aerosol data in an advanced chemistry transport model. Proceedings of the ESA Atmospheric Science Conference, ESA, Frascati.

    Google Scholar 

  26. Niu, T., S. L. Gong, G. F. Zhu, H. L. Liu, X. Q. Hu, C. H. Zhou, and Y. Q. Wang, 2008: Data assimilation of dust aerosol observations for the CUACE/dust forecasting system. Atmospheric Chemistry and Physics, 8, 3473–3482, https://doi.org/10.5194/acp-8-3473-2008.

    Article  Google Scholar 

  27. Otte, T. L., and Coauthors, 2005: Linking the Eta Model with the Community Multiscale Air Quality (CMAQ) modeling system to build a national air quality forecasting system. Wea. Forecasting, 20, 367–384, https://doi.org/10.1175/WAF855.1.

    Article  Google Scholar 

  28. Pang, Y., 2012: Distribution and evolution of atmospheric pollutants over Beijing-Tianjing-Hebei region. M.S. thesis, Nanjing University of Information Science & Technology. 1–51.

    Google Scholar 

  29. Parrish, D. F., and J. C. Derber, 1992: The national meteorological center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747–1763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    Article  Google Scholar 

  30. Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973, https://doi.org/10.1175/JAS3385.1.

    Article  Google Scholar 

  31. Saide, P. E., J. Kim, C. H. Song, M. Choi, Y. Cheng, and G. R. Carmichael, 2014: Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations, Geophys. Res. Lett., 41, 9188–9196, https://doi.org/10.1002/2014GL062089.

    Article  Google Scholar 

  32. Schroedter-Homscheidt, M., H. Elbern, and T. Holzer-Popp, 2010: Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model. Atmospheric Chemistry and Physics, 10, 10 435–10 452, https://doi.org/10.5194/acp-10-10435-2010.

    Article  Google Scholar 

  33. Seinfeld, J. H., and Coauthors, 2004: ACE-ASIA: Regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull. Amer. Meteor. Soc., 85, 367–380, https://doi.org/10.1175/BAMS-85-3-367.

    Article  Google Scholar 

  34. Shinozuka, Y., and Coauthors, 2011: Airborne observation of aerosol optical depth during ARCTAS: Vertical profiles, intercomparison and fine-mode fraction. Atmospheric Chemistry and Physic, 11, 3673–3688, https://doi.org/10.5194/acp-11-3673-2011.

    Article  Google Scholar 

  35. Stockwell, W. R., F. Kirchner, M. Kuhn, and S. Seefeld, 1997: A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res., 102, 25 847–25 879, https://doi.org/10.1029/97JD00849.

    Article  Google Scholar 

  36. Xie, Y., Y. Zhang, X. X. Xiong, J. J. Qu, and H. Z. Che, 2011: Validation of MODIS aerosol optical depth product over China using CARSNET measurements. Atmos. Environ., 45, 5970–5978, https://doi.org/10.1016/j.atmosenv.2011.08.002.

    Article  Google Scholar 

  37. Yang, J., C. H. Dong, N. M. Lu, Z. D. Yang, J. M. Shi, P. Zhang, Y. J. Liu, and B. Cai, 2009: FY-3A: The new generation polar-orbiting meteorological satellite of China. Acta Meteorologica Sinica, 67, 501–509, https://doi.org/10.11676/qxxb2009.050. (in Chinese with English abstract)

    Google Scholar 

  38. Yumimoto, K., and Coauthors, 2016: Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett., 43, 5886–5894, https://doi.org/10.1002/2016GL069298.

    Article  Google Scholar 

  39. Zhang, J., H. Y. Liu, J. Y. Xin, W. Y. Zhang, G. J. Xiao, X. Y. Feng, and L. L. Wang, 2016: The comparison of MODIS and MERSI aerosol products in Shenyang. Journal of Remote Sensing, 20, 549–560, https://doi.org/10.11834/jrs.20165250. (in Chinese with English abstract)

    Google Scholar 

  40. Zhang, J., J. S. Reid, 2006: MODIS aerosol product analysis for data assimilation: Assessment of over-ocean level 2 aerosol optical thickness retrievals. Journal of Geophysical Research Atmospheres, 111, D22207, https://doi.org/10.1029/2005JD006898.

    Article  Google Scholar 

  41. Zhang, J. L., J. S. Reid, D. L. Westphal, N. L. Baker, and E. J. Hyer, 2008: A system for operational aerosol optical depth data assimilation over global oceans. J. Geophys. Res., 113, D10208, https://doi.org/10.1029/2007JD009065.

    Article  Google Scholar 

  42. Zhang, Q., D. G. Streets, G. R. Carmichael, K. He. H. Huo, A. Kannari, Z. Klimont, I. Park, S. Reddy, J. S. Fu, D. Chen, L. Duan, Y. Lei, L. Wang, and Z. Yao, 2009: Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry & Physics Discussions, 9, 5131–5153.

    Article  Google Scholar 

  43. Zhao, H. J., H. Z. Che, X. Y. Zhang, Y. J. Ma, Y. F. Wang, H. Wang, and Y. Q. Wang, 2013: Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmospheric Pollution Research, 4, 427–434, https://doi.org/10.5094/APR.2013.049.

    Article  Google Scholar 

Download references

Acknowledgements

This research was primarily supported by the National Key Research and Development Program of China (Grant Nos. 2017YFC1502100 and 2016YFA0602302), the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20160954 and BK20170940), the Beijige Funding from Jiangsu Research Institute of Meteorological Science (Grant Nos. BJG201510 and BJG201604), the Startup Foundation for Introducing Talent of NUIST (Grant Nos. 2016r27, 2016r043 and 2017r058), a project for data application of Fengyun3 meteorological satellite [FY-3(02)-UDS-1.1.2], and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinzhong Min.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Min, J., Shen, F. et al. Aerosol Data Assimilation Using Data from Fengyun-3A and MODIS: Application to a Dust Storm over East Asia in 2011. Adv. Atmos. Sci. 36, 1–14 (2019). https://doi.org/10.1007/s00376-018-8075-9

Download citation

Key words

  • Fengyun-3A satellite
  • aerosol optical depth
  • data assimilation
  • dust storm

关键词

  • 风云3A卫星
  • 气溶胶光学厚度
  • 资料同化
  • 沙尘暴