Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 1, pp 41–54 | Cite as

Evaluating the Algorithm for Correction of the Bright Band Effects in QPEs with S-, C- and X-Band Dual-Polarized Radars

  • Yang Cao
  • Debin Su
  • Xingang Fan
  • Hongbin ChenEmail author
Original Paper
  • 52 Downloads

Abstract

The bright band, a layer of enhanced radar reflectivity associated with melting ice particles, is a major source of significant overestimation in quantitative precipitation estimation (QPE) based on the Z–R (reflectivity factor–rain rate) relationship. The effects of the bright band on radar-based QPE can be eliminated by vertical profile of reflectivity (VPR) correction. In this study, we applied bright-band correction algorithms to evaluate three different bands (S-, C- and X-band) of dual-polarized radars and to reduce overestimation errors in Z–R relationship–based QPEs. After the reflectivity was corrected by the algorithms using average VPR (AVPR) alone and a combination of average VPR and the vertical profile of the copolar correlation coefficient (AVPR+CC), the QPEs were derived. The bright-band correction and resulting QPEs were evaluated in eight precipitation events by comparing to the uncorrected reflectivity and rain-gauge observations, separately. The overestimation of Z–R relationship–based QPEs associated with the bright band was reduced after correction by the two schemes for which hourly rainfall was less than 5 mm. For the verification metrics of RMSE (root-mean-square error), RMAE (relative mean absolute error) and RMB (relative mean bias) of QPEs, averaged over all eight cases, the AVPR method improved from 2.28, 0.94 and 0.78 to 1.55, 0.60 and 0.40, respectively, while the AVPR+CC method improved to 1.44, 0.55 and 0.30, respectively. The QPEs after AVPR+CC correction had less overestimation than those after AVPR correction, and similar conclusions were drawn for all three different bands of dual-polarized radars.

Key words

dual-polarized radar bright band QPE vertical profile of reflectivity 

摘要

零度层亮带是指融化的冰晶粒子造成反射率因子增大的带区, 其存在会引起基于Z-R关系的定量估测降水(QPE)明显高估. 采用反射率因子垂直廓线(VPR)进行零度层亮带订正可以减弱QPE高估. 本文将此订正方法应用于三个不同波段(S, C, X)的双线偏振雷达上, 以减小QPE高估误差. 采用平均反射率因子垂直廓线法(AVPR)和平均反射率因子垂直廓线与平均相关系数垂直廓线相结合的方法(AVPR+CC)分别对反射率因子进行订正, 采用8次降水过程比较订正前后反射率因子反演的降水, 并与地面雨量站实测降水比较. 结果表明, 当小时降雨量小于5mm时, 两种订正方法均能有效减弱零度层亮带存在引起的QPE高估. 采用均方根误差, 相对平均绝对误差和相对平均偏差三个参数进行误差分析, 平均来看, AVPR法分别从2.28, 0.94和0.78提高到1.55, 0.60和0.40, AVPR+CC法分别提高到1.44, 0.55和0.30. AVPR+CC法订正后的反射率因子反演的QPE误差小于AVPR法, 三个波段雷达具有相似的结果.

关键词

双偏振雷达 零度层亮带 定量估测降水 反射率因子垂直廓线 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was funded by a China National 973 Program on Key Basic Research project (Grant No. 2014CB441401), the Beijing Municipal Natural Science Foundation (Grant No. 8141002), and the Public Welfare Industry (Meteorology) of China (Grant No. GYHY201106046). The authors greatly appreciate the immense assistance provided by the other participants at the Institute of Atmospheric Physics and the Meteorological Bureau of Beijing and Xiamen, China.

References

  1. Boodoo, S., D. Hudak, N. Donaldson, and M. Leduc, 2010: Application of dual-polarization radar melting-layer detection algorithm. Journal of Applied Meteorology and Climatology, 49, 1779–1793, https://doi.org/10.1175/2010JAMC2421.1.CrossRefGoogle Scholar
  2. Bringi, V. N., T. D. Keenan, and V. Chandrasekar, 2001: Correcting c-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 1906–1915, https://doi.org/10.1109/36.951081.CrossRefGoogle Scholar
  3. Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnic, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829–840, https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.CrossRefGoogle Scholar
  4. Cifelli, R., V. Chandrasekar, S. Lim, P. C. Kennedy, Y. Wang, and S. A. Rutledge, 2011: A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Oceanic Technol., 28, 352–364, https://doi.org/10.1175/2010JTECHA1488.1.CrossRefGoogle Scholar
  5. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.CrossRefGoogle Scholar
  6. Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838–851, https://doi.org/10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.CrossRefGoogle Scholar
  7. Giangrande, S. E., and A. V. Ryzhkov, 2005: Calibration of dualpolarization radar in the presence of partial beam blockage. J. Atmos. Oceanic Technol., 22, 1156–1166, https://doi.org/10.1175/JTECH1766.1.CrossRefGoogle Scholar
  8. Giangrande, S. E., J. M. Krause, and A. V. Ryzhkov, 2008: Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. Journal of Applied Meteorology and Climatology, 47, 1354–1364, https://doi.org/10.1175/2007JAMC1634.1.CrossRefGoogle Scholar
  9. Haimberger, L., C. Tavolato, and S. Sperka, 2012: Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations. J. Climate, 25, 8108–8131, https://doi.org/10.1175/JCLI-D-11-00668.1.CrossRefGoogle Scholar
  10. Hall, W., M. A. Rico-Ramirez, and S. Krämer, 2015: Classification and correction of the bright band using an operational C-band polarimetric radar. J. Hydrol., 531, 248–258, https://doi.org/10.1016/j.jhydrol.2015.06.011.CrossRefGoogle Scholar
  11. Hubbert, J. C., S. M. Ellis, M. Dixon, and G. Meymaris, 2010: Modeling, error analysis, and evaluation of dual-polarization variables obtained from simultaneous horizontal and vertical polarization transmit radar. Part I: Modeling and antenna errors. J. Atmos. Oceanic Technol., 27, 1583–1598, https://doi.org/10.1175/2010JTECHA1336.1.Google Scholar
  12. Jameson, A. R., 1992: The effect of temperature on attenuationcorrection schemes in rain using polarization propagation differential phase shift. J. Appl. Meteor., 31, 1106–1118, https://doi.org/10.1175/1520-0450(1992)031<1106:TEOTOA>2.0.CO;2.CrossRefGoogle Scholar
  13. Kalogiros, J., M. N. Anagnostou, E. N. Anagnostou, M. Montopoli, E. Picciotti, and F. S. Marzano, 2013: Correction of polarimetric radar reflectivity measurements and rainfall estimates for apparent vertical profile in stratiform rain. Journal of Applied Meteorology and Climatology, 52, 1170–1186, https://doi.org/10.1175/JAMC-D-12-0140.1.CrossRefGoogle Scholar
  14. Kumar, V. S., and T. M. Naseef, 2015: Performance of ERAInterim wave data in the nearshore waters around India. J. Atmos. Oceanic Technol., 32, 1257–1269, https://doi.org/10.1175/JTECH-D-14-00153.1.CrossRefGoogle Scholar
  15. Liu, X. Y., H. P. Yang, J. T. Li, B. Li, K. Zhao, and Y. Y. Zheng, 2010: CINRAD radar quantitative precipitation estimation group system. Meteorological Monthly, 36, 90–95. (in Chinese with English abstract).Google Scholar
  16. Mooney, P. A., F. J. Mulligan, and R. Fealy, 2011: Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. International Journal of Climatology, 31, 545–557, https://doi.org/10.1002/joc.2098.CrossRefGoogle Scholar
  17. Park, S. G., V. N. Bringi, V. Chandrasekar, M. Maki, and K. Iwanami, 2005a: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part I: Theoretical and empirical basis. J. Atmos. Oceanic Technol., 22, 1621–1632, https://doi.org/10.1175/JTECH1803.1.CrossRefGoogle Scholar
  18. Park, S. G., M. Maki, K. Iwanami, V. N. Bringi, and V. Chandrasekar, 2005b: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application. J. Atmos. Oceanic Technol., 22, 1633–1655, https://doi.org/10.1175/JTECH1804.1.CrossRefGoogle Scholar
  19. Park, H. S., A. V. Ryzhkov, D. S. Zrnic, and K. E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730–748, https://doi.org/10.1175/2008WAF2222205.1.CrossRefGoogle Scholar
  20. Qi, Y. C., and J. Zhang, 2013: Correction of radar QPE errors associated with low and partially observed brightband layers. Journal of Hydrometeorology, 14, 1933–1943, https://doi.org/10.1175/JHM-D-13-040.1.CrossRefGoogle Scholar
  21. Qi, Y. C., J. Zhang, and P. F. Zhang, 2013a: A real-time automated convective and stratiform precipitation segregation algorithm in native radar coordinates. Quart. J. Roy. Meteor. Soc., 139, 2233–2240, https://doi.org/10.1002/qj.2095.CrossRefGoogle Scholar
  22. Qi, Y. C., J. Zhang, P. F. Zhang, and Q. Cao, 2013b: VPR correction of bright band effects in radar QPEs using polarimetric radar observations. J. Geophys. Res., 118, 3627–3633, https://doi.org/10.1002/jgrd.50364.Google Scholar
  23. Qi, Y. C., J. Zhang, Q. Cao, Y. Hong, and X. M. Hu, 2013c: Correction of radar QPE errors for nonuniform VPRs in mesoscale convective systems using TRMM observations. Journal of Hydrometeorology, 14, 1672–1682, https://doi.org/10.1175/JHM-D-12-0165.1.CrossRefGoogle Scholar
  24. Smith, C. J., 1986: The reduction of errors caused by bright bands in quantitative rainfall measurements made using radar. J. Atmos. Oceanic Technol., 3, 129–141, https://doi.org/10.1175/1520-0426(1986)003<0129:TROECB>2.0.CO;2.CrossRefGoogle Scholar
  25. Sánchez-Diezma, R., I. Zawadzki, and D. Sempere-Torres, 2000: Identification of the Bright Band through the Analysis of Volumetric Radar Data. J. Geophys. Res., 105, 2225–2236,  https://doi.org/10.1029/1999JD900310.CrossRefGoogle Scholar
  26. Shusse, Y., N. Takahashi, K. Nakagawa, S. Satoh, and T. Iguchi, 2011: Polarimetric radar observation of the melting layer in a convective rainfall system during the rainy season over the East China Sea. Journal of Applied Meteorology and Climatology, 50, 354–367,  https://doi.org/10.1175/2010JAMC2469.1.CrossRefGoogle Scholar
  27. Sun, H. M., P. Y. Zhang, Z. Jiang, and H. Y. Li, 2015: Automated correction of the bright band of weather radar reflectivity data in radar quantitative precipitation estimation. Transactions of Atmospheric Sciences, 38, 492–501, https://doi.org/10.13878/j.cnki.dqkxxb.20121207001 (in Chinese with English abstract)Google Scholar
  28. Wang, H., H. C. Lei, and J. F. Yang, 2017: Microphysical processes of a stratiform precipitation event over Eastern China: Analysis using micro rain radar data. Adv. Atmos. Sci., 34(12), 1472–1482,  https://doi.org/10.1007/s00376-017-7005-6.CrossRefGoogle Scholar
  29. Wang, Y. T., and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 2565–2578, https://doi.org/10.1175/2009JTECHA1358.1.CrossRefGoogle Scholar
  30. White, A. B., P. J. Neiman, F. M. Ralph, D. E. Kingsmill, and P. O. G. Persson, 2003: Coastal orographic rainfall processes observed by radar during the California Land-Falling Jets Experiment. Journal of Hydrometeorology, 4, 264–282, https://doi.org/10.1175/1525-7541(2003)4<264:CORPOB>2.0.CO;2.CrossRefGoogle Scholar
  31. Wu, C., L. P. Liu, M. Wei, B. Z. Xi, and M. H. Yu, 2018: Statistics-based optimization of the polarimetric radar Hydrometeor Classification Algorithm and its application for a squall line in South China. Adv. Atmos. Sci., 35(3), 296–316,  https://doi.org/10.1007/s00376-017-6241-0.CrossRefGoogle Scholar
  32. Xiao, Y. J., L. P. Liu, Z. H. Li, and H. Y. Wang, 2010: Automatic recognition and removal of the bright band using radar reflectivity data. Plateau Meteorology, 29, 197–205. (in Chinese with English abstract).Google Scholar
  33. Yang, Y., X. Chen, and Y. C. Qi, 2013: Classification of convective/ stratiform echoes in radar reflectivity observations using a fuzzy logic algorithm. J. Geophys. Res., 118, 1896–1905, https://doi.org/10.1002/jgrd.50214.Google Scholar
  34. Zhang, J., and Y. C. Qi, 2010: A real-time algorithm for the correction of brightband effects in radar-derived QPE. Journal of Hydrometeorology, 11, 1157–1171, https://doi.org/10.1175/2010JHM1201.1.CrossRefGoogle Scholar
  35. Zhang, J., C. Langston, and K. Howard, 2008: Brightband identification based on vertical profiles of reflectivity from the WSR-88D. J. Atmos. Oceanic Technol., 25, 1859–1872, https://doi.org/10.1175/2008JTECHA1039.1.CrossRefGoogle Scholar
  36. Zhang, J., Y. C. Qi, D. Kingsmill, and K. Howard, 2012: Radarbased quantitative precipitation estimation for the cool season in complex terrain: Case studies from the NOAA hydrometeorology testbed. Journal of Hydrometeorology, 13, 1836–1854, https://doi.org/10.1175/JHM-D-11-0145.1.CrossRefGoogle Scholar
  37. Zhuang, W., L. P. Liu, and Z. Q. Hu, 2013: Application of bright band identification and correction in radar-based QPE over Tibetan Plateau. Meteorological Monthly, 39, 1004–1013, https://doi.org/10.7519/j.issn.1000-0526.2013.08.007. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yang Cao
    • 1
    • 2
    • 3
  • Debin Su
    • 2
    • 5
  • Xingang Fan
    • 2
    • 4
  • Hongbin Chen
    • 1
    Email author
  1. 1.Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.College of Electronic EngineeringChengdu University of Information TechnologyChengduChina
  3. 3.Sichuan Meteorological Disasters Prevention Technology CenterChengduChina
  4. 4.Department of Geography and GeologyWestern Kentucky UniversityBowling GreenUSA
  5. 5.China Meteorological Administration Key Laboratory of Atmospheric SoundingChengduChina

Personalised recommendations