Abkar, M., and F. Porté-Agel, 2015: A new wind-farm parameterization for large-scale Atmospheric models. Journal of Renewable and Sustainable Energy, 7, 013121, https://doi.org/10.1063/1.4907600.
Article
Google Scholar
Adams, A. S., and D. W. Keith, 2007: Wind energy and climate: Modeling the atmospheric impacts of wind energy turbines. American Geophysical Union, Fall Meeting 2007, American Geophysical Union, B44B-08.
Google Scholar
Aitken, M. L., B. Kosovic, J. D. Mirocha, and J. K. Lundquist, 2014: Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting Model. Journal of Renewable and Sustainable Energy, 6, 033137, https://doi.org/10.1063/1.4885111.
Article
Google Scholar
Baidya Roy, S., 2011: Simulating impacts of wind farms on local hydrometeorology. Journal of Wind Engineering and Industrial Aerodynamics, 99, 491–498, https://doi.org/10.1016/j.jweia.2010.12.013.
Article
Google Scholar
Baidya Roy, S., and J. J. Traiteur, 2010: Impacts of wind farms on surface air temperatures. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 17 899–17 904, https://doi.org/10.1073/pnas. 1000493107.
Article
Google Scholar
Baidya Roy, S., S. W. Pacala, and R. L. Walko, 2004: Can large wind farms affect local meteorology? J. Geophys. Res., 109, D19101, https://doi.org/10.1029/2004JD004763.
Article
Google Scholar
Banks, R. F., J. Tiana-Alsina, J. M. Baldasano, F. Rocadenbosch, A. Papayannis, S. Solomos, and C. G. Tzanis, 2016: Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmos. Res., 176–177, 185–201, https://doi.org/10.1016/j.atmosres. 2016.02.024.
Article
Google Scholar
Blahak, U., B. Goretzki, and J. Meis, 2010: A simple parameterization of drag forces induced by large wind farms for numerical weather prediction models. Proc. European Wind Energy Conf. and Exhibition, PO ID 445, Warsaw, Poland, EWEC, 186–189.
Google Scholar
Bowden, J. H., T. L. Otte, C. G. Nolte, and M. J. Otte, 2012: Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling. J. Climate, 25, 2805–2823, https://doi.org/10.1175/JCLI-D-11-00167.1.
Article
Google Scholar
Calaf, M., M. B. Parlange, and C. Meneveau, 2011: Large eddy simulation study of scalar transport in fully developed windturbine array boundary layers. Physics of Fluids, 23, 126603, https://doi.org/10.1063/1.3663376.
Article
Google Scholar
Cervarich, M. C., S. Baidya Roy, and L. M. Zhou, 2013: Spatiotemporal structure of wind farm-atmospheric boundary layer interactions. Energy Procedia, 40, 530–536, https://doi.org/10.1016/j.egypro.2013.08.061.
Article
Google Scholar
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn state-NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 569–585, https://doi.org/10.1175/1520-0493 (2001)129<0587:CAALSH>2.0.CO;2.
Google Scholar
Christiansen, M. B., and C. B. Hasager, 2005: Wake effects of large offshore wind farms identified from satellite SAR. Remote Sensing of Environment, 98, 251–268, https://doi.org/10.1016/j.rse.2005.07.009.
Article
Google Scholar
Churchfield, M., S. Lee, P. Moriarty, L. Martinez, S. Leonardi, G. Vijayakumar, and J. Brasseur, 2012: A Large-eddy simulation of wind-plant aerodynamics. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, AIAA.
Google Scholar
de Andrade Campos, D., S. C. Chou, C. Spyrou, J. C. S. Chagas, and M. J. Bottino, 2017: Eta model simulations using two radiation schemes in clear-sky conditions. Meteor. Atmos. Phys., 130, 39–48, https://doi.org/10.1007/s00703-017-0500-6.
Article
Google Scholar
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46(20), 3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077: NSOCOD>2.0.CO;2.
Article
Google Scholar
Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108(D22), 8851, https://doi.org/10.1029/2002JD003296.
Google Scholar
Eriksson, O., J. Lindvall, S. P. Breton, and S. Ivanell, 2015: Wake downstream of the Lillgrund wind farm-A Comparison between LES using the actuator disc method and a wind farm parametrization in WRF. Journal of Physics: Conference Series, 625, 012028, https://doi.org/10.1088/1742-6596/625/1/012028.
Google Scholar
Fitch, A. C., J. K. Lundquist, and J. B. Olson, 2013a: Mesoscale influences of wind farms throughout a diurnal cycle. Mon. Wea. Rev., 141, 2173–2198, https://doi.org/10.1175/MWR-D-12-00185.1.
Article
Google Scholar
Fitch, A. C., J. B. Olson, and J. K. Lundquist, 2013b: Parameterization of wind farms in climate models. J. Climate, 26, 6439–6458, https://doi.org/10.1175/JCLI-D-12-00376.1.
Article
Google Scholar
Fitch, A. C., J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad, 2012: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Wea. Rev., 140, 3017–3038, https://doi.org/10.1175/MWR-D-11-00352.1.
Article
Google Scholar
Gao, M., J. C. Ning, and X. Q. Wu, 2015: Normal and extreme wind conditions for power at coastal locations in China. PLoS One, 10(8), e013876, https://doi.org/10.1371/journal.pone. 0136876.
Google Scholar
Global Wind Energy Council, 2018: Global wind statistics 2017. Global Wind Energy Council Rep., 4 pp.
Google Scholar
Grell, G. A., and D. Dévényi, 2002: A generalized approach to parametrizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14), 1693, https://doi.org/10.1029/2002GL015311.
Article
Google Scholar
Gutierrez, W., G. Araya, S. Basu, A. Ruiz-Columbie, and L. Castillo, 2014: Toward understanding low level jet climatology over west Texas and its impact on wind energy. Journal of Physics: Conference Series, 524, 012008, https://doi.org/10.1088/1742-6596/524/1/012008.
Google Scholar
Hainbucher, D., W. Hao, T. Pohlmann, J. Sündermann, and S. Z. Feng, 2004: Variability of the Bohai Sea circulation based on model calculations. J. Mar. Syst., 44, 153–174, https://doi.org/10.1016/j.jmarsys.2003.09.008.
Article
Google Scholar
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M.W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by longlived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.
Google Scholar
IEA, 2011: Technological roadmap: China wind energy roadmap development 2050. OECD/IEA/ERI Rep., 56 pp.
Google Scholar
IEA, 2013: Technology roadmap: Wind energy. OECD/IEA, Rep., 63 pp.
Google Scholar
Ivanova, L. A., and E. D. Nadyozhina, 2000: Numerical simulation of wind farm influence on wind flow. Wind Engineering, 24, 257–269, https://doi.org/10.1260/0309524001495620.
Article
Google Scholar
Jacobson, M. Z., and C. L. Archer, 2012: Saturation wind power potential and its implications for wind energy. Proceedings of the National Academy of Sciences of the United States of America, 109, 15679–15 684, https://doi.org/10.1073/pnas. 1208993109.
Article
Google Scholar
Jiménez, A., A. Crespo, E. Migoya, and J. Garcia, 2007: Advances in large-eddy simulation of a wind turbine wake. Journal of Physics: Conference Series, 75, 012041, https://doi.org/10.1088/1742-6596/75/1/012041.
Google Scholar
Jiménez, P. A., J. Navarro, A. M. Palomares, and J. Dudhia, 2015: Mesoscale modeling of offshore wind turbine wakes at the wind farm resolving scale: A composite-based analysis with theWeather Research and Forecasting Model over Horns Rev. Wind Energy, 18, 559–566, https://doi.org/10.1002/we.1708.
Article
Google Scholar
Kirk-Davidoff, D. B., and D. W. Keith, 2008: On the climate impact of surface roughness anomalies. J. Atmos. Sci., 65, 2215–2234, https://doi.org/10.1175/2007JAS2509.1.
Article
Google Scholar
Lee, J. C. Y., and J. K. Lundquist, 2017: Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data. Geoscientific Model Development, 10, 4229–4244, https://doi.org/10.5194/gmd-10-4229-2017.
Article
Google Scholar
Li, D. L., H. Von Storch, B. S. Yin, Z. H. Xu, J. F. Qi, W. Wei, and D. L. Guo, 2018: Low-level jets over the Bohai Sea and Yellow Sea: Climatology, variability, and the relationship with regional atmospheric circulations. J. Geophys. Res., 123, 5240–5260, https://doi.org/10.1029/2017JD027949.
Article
Google Scholar
Liu, P., A. P. Tsimpidi, Y. Hu, B. Stone, A. G. Russell, and A. Nenes, 2012: Differences between downscaling with spectral and grid nudging using WRF. Atmos. Chem. Phys., 12(8), 3601–3610, https://doi.org/10.5194/acp-12-3601-2012.
Article
Google Scholar
Lu, H., and F. Porté-Agel, 2011: Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Physics of Fluids, 23, 065101, https://doi.org/1063/1.3589857.
Article
Google Scholar
Ma, Y. Y., Y. Yang, X. P. Mai, C. J. Qiu, X. Long, and C. H. Wang, 2016: Comparison of analysis and spectral nudging techniques for dynamical downscaling with the WRF model over China. Advances in Meteorology, 2016, 4761513, https://doi.org/10.1155/2016/4761513.
Article
Google Scholar
Manwell, J. F., J. G. McGowan, and A. L. Rogers, 2002: Wind Energy Explained: Theory, Design and Application. Willey, 46–47.
Book
Google Scholar
Mirocha, J. D., B. Kosovic, M. L. Aitken, and J. K. Lundquist, 2014: Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications. Journal of Renewable and Sustainable Energy, 6, 013104, https://doi.org/10.1063/1.4861061.
Article
Google Scholar
Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87(5), 895–912, https://doi.org/10.2151/jmsj.87.895.
Article
Google Scholar
Porté-Agel, F., Y. T. Wu, H. Lu, and R. J. Conzemius, 2011: Largeeddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. Journal of Wind Engineering and Industrial Aerodynamics, 99, 154–168, https://doi.org/10.1016/j.jweia.2011.01.011.
Article
Google Scholar
Rajewski, D. A., E. S. Takle, J. K. Lundquist, J. H. Prueger, R. L. Pfeiffer, J. L. Hatfield, K. K. Spoth, and R. K. Doorenbos, 2014: Changes in fluxes of heat, H2O, and CO2 caused by a large wind farm. Agricultural and Forest Meteorology, 194, 175–187, https://doi.org/10.1016/j.agrformet.2014.03.023.
Article
Google Scholar
Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN 475+STR, https://doi.org/10.5065/D68S4MVH.
Google Scholar
Smith, R. B., 2009: Gravity wave effects on wind farm efficiency. Wind Energ, 13, 449–458, https://doi.org/10.1002/we.366.
Article
Google Scholar
Telford, P. J., P. Braesicke, O. Morgenstern, and J. A. Pyle, 2008: Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model. Atmos. Chem. Phys., 8, 1701–1712, https://doi.org/10.5194/acp-8-1701-2008.
Article
Google Scholar
Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71(10), 3636–3658, https://doi.org/10.1175/JAS-D-13-0305.1.
Article
Google Scholar
Uhe, P., and M. Thatcher, 2015: A spectral nudging method for the ACCESS1.3 atmospheric model. Geoscientific Model Development, 8, 1645–1658, https://doi.org/10.5194/gmd-8-1645-2015.
Article
Google Scholar
Vanderwende, B. J., B. Kosovic, J. K. Lundquist, and J. D. Mirocha, 2016: Simulating effects of a wind-turbine array using LES and RANS. Journal of Advances in Modeling Earth Systems, 8, 1376–1390, https://doi.org/10.1002/2016 MS000652.
Article
Google Scholar
Volker, P. J. H., J. Badger, A. N. Hahmann, and S. Ott, 2015: The explicit wake parametrisation V1.0: A wind farm parametrisation in the mesoscale model WRF. Geoscientific Model Development, 8, 3715–3731, https://doi.org/10.5194/gmd-8-3715-2015.
Article
Google Scholar
Von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128(10), 3664–3673, https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.
Article
Google Scholar
Wang, C., and R. G. Prinn, 2010: Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys., 10, 2053–2061, https://doi.org/10.5194/acp-10-2053-2010.
Article
Google Scholar
Wang, C., and R. G. Prinn, 2011: Potential climatic impacts and reliability of large-scale offshore wind farms. Environmental Research Letters, 6, 025101, https://doi.org/10.1088/1748-9326/6/2/025101.
Article
Google Scholar
Wang, Q., X. Y. Guo, and H. Takeoka, 2008: Seasonal variations of the Yellow River plume in the Bohai Sea: A model study. J. Geophys. Res., 113, C08046, https://doi.org/10.1029/2007 JC004555.
Google Scholar
Wu, Y. T., and F. Porté-Agel, 2013: Simulation of turbulent flow inside and above wind farms: Model validation and layout effects. Bound.-Layer Meteor., 146, 181–205, https://doi.org/10.1007/s10546-012-9757-y.
Article
Google Scholar
Zhou, L. M., Y. H. Tian, S. Baidya Roy, C. Thorncroft, F. L. Bosart, and Y. L. Hu, 2012: Impacts of wind farms on land surface temperature. Nat. Clim. Change, 2(7), 539–543, https://doi.org/10.1038/NCLIMATE1505.
Article
Google Scholar