Locating Parent Lightning Strokes of Sprites Observed over a Mesoscale Convective System in Shandong Province, China

Abstract

In this paper, we report the location results for the parent lightning strokes of more than 30 red sprites observed over an asymmetric mesoscale convective system (MCS) on 30 July 2015 in Shandong Province, China, with a long-baseline lightning location network of very-low-frequency/low-frequency magnetic field sensors. The results show that almost all of these cloud-to-ground (CG) strokes are produced during the mature stage of the MCS, and are predominantly located in the trailing stratiform region, which is similar to analyses of sprite-productive MCSs in North America and Europe. Comparison between the location results for the sprite-producing CG strokes and those provided by the World Wide Lightning Location Network (WWLLN) indicates that the location accuracy of WWLLN for intense CG strokes in Shandong Province is typically within 10 km, which is consistent with the result based on analysis of 2838 sprite-producing CG strokes in the continental United States. Also, we analyze two cases where some minor lightning discharges in the parent flash of sprites can also be located, providing an approach to confine the thundercloud region tapped by the sprite-producing CG strokes.

摘要

本文利用长基线闪电定位网中的超低频和低频磁天线观测到了2015年夏季中国山东省一次不对称中尺度对流系统(MCS)上空产生的30多次红色精灵(red sprite)瞬态发光事件, 并得到了红色精灵母体闪电的自主定位结果. 定位结果显示, 几乎所有红色精灵母体地闪(CG)回击都产生在MCS的成熟期, 主要位于MCS尾部层状云区, 这和北美与欧洲对产生sprite的MCS的研究结果一致. 对比红色精灵母体闪电的定位结果和全球闪电定位网(WWLLN)提供的定位数据, 发现WWLLN对于山东省强地闪回击的定位误差在10公里以内, 这和在美国大陆基于2838次红色精灵母体闪电的相关研究结果一致. 此外, 我们分析了两个可以定位舞蹈状红色精灵母体闪电中微小放电过程的个例, 提供了一种估算母体闪电在雷暴云中总放电区域的方法.

This is a preview of subscription content, access via your institution.

References

  1. Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau Jr., 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res., 115, D18206, https://doi.org/10.1029/2009JD013411.

    Article  Google Scholar 

  2. Asano, T., T. Suzuki, M. Hayakawa, and M. G. Cho, 2009: Three-dimensional EM computer simulation on sprite initiation above a horizontal lightning discharge. Journal of Atmospheric and Solar-Terrestrial Physics, 71(8–9), 983–990, https://doi.org/10.1016/j.jastp.2009.04.003.

    Article  Google Scholar 

  3. Bell, T. F., S. C. Reising, and U. S. Inan, 1998: Intense continuing currents following positive cloud-to-ground lightning associated with red sprites. Geophys. Res. Lett., 25(8), 1285–1288, https://doi.org/10.1029/98GL00734.

    Article  Google Scholar 

  4. Biagi, C. J., K. L. Cummins, K. E. Kehoe, and E. P. Krider, 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, https://doi.org/10.1029/2006JD007341.

    Article  Google Scholar 

  5. Boccippio, D. J., E. R. Williams, S. J. Heckman, W. A. Lyons., I. T. Baker, and R. Boldi, 1995: Sprites, ELF transients, and positive ground strokes. Science, 269, 1088–1091, https://doi.org/10.1126/science.269.5227.1088.

    Article  Google Scholar 

  6. Carey, L. D., M. J. Murphy, T. L. McCormick, and N. W. S. Demetriades, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res., 110, D03105, https://doi.org/10.1029/2003JD004371.

    Article  Google Scholar 

  7. Chen, A. B., and Coauthors, 2008: Global distributions and occurrence rates of transient luminous events. J. Geophys. Res., 113, A08306, https://doi.org/10.1029/2008JA013101.

    Google Scholar 

  8. Connaughton, V., and Coauthors, 2010: Associations between Fermi Gamma-ray Burst Monitor terrestrial gamma ray flashes and sferics from the World Wide Lightning Location Network. J. Geophys. Res., 115, A12307, https://doi.org/10.1029/2010JA015681.

    Article  Google Scholar 

  9. Cummer, S. A., and W. A. Lyons, 2005: Implications of lightning charge moment changes for sprite initiation. J. Geophys. Res., 110, A04304, https://doi.org/10.1029/2004JA010812.

    Article  Google Scholar 

  10. Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103(D8), 9035–9044, https://doi.org/10.1029/98JD00153.

    Article  Google Scholar 

  11. Fishman, G. J., and Coauthors, 1994: Discovery of intense Gamma-ray flashes of atmospheric origin. Science, 264, 1313–1316, https://doi.org/10.1126/science.264.5163.1313.

    Article  Google Scholar 

  12. Franz, R. C., R. J. Nemzek, and J. R. Winckler, 1990: Television image of a large upward electrical discharge above a thunderstorm system. Science, 249, 48–51, https://doi.org/10.1126/10.1126/science.249.4964.48.

    Article  Google Scholar 

  13. Füllekrug, M., D. R. Moudry, G. Dawes, and D. D. Sentman, 2001: Mesospheric sprite current triangulation. J. Geophys. Res., 16(D17), 20189–20194, https://doi.org/10.1029/2001JD900075.

    Article  Google Scholar 

  14. Fuquay, D. M., 1982: Positive cloud-to-ground lightning in summer thunderstorms. J. Geophys. Res., 87, 7131–7140, https://doi.org/10.1029/JC087iC09p07131.

    Article  Google Scholar 

  15. Gomes, C., and V. Cooray, 1998: Long impulse currents associated with positive return strokes. Journal of Atmospheric and Solar-Terrestrial Physics, 60, 693–699, https://doi.org/10.1016/S1364-6826(98)00039-X.

    Article  Google Scholar 

  16. Harris, M., 2007: Optimizing parallel reduction in CUDA. NIBVIDA Developer Technology, 45 pp.

    Google Scholar 

  17. Houze, R. A., Jr., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613–654, https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.

    Article  Google Scholar 

  18. Huang, E., E. Williams, R. Boldi, S. Heckman, W. Lyons, M. Taylor, T. Nelson, and C. Wong, 1999: Criteria for sprites and elves based on Schumann resonance observations. J. Geophys. Res., 104, 16943–16964, https://doi.org/10.1029/1999JD900139.

    Article  Google Scholar 

  19. Hutchins, M. L., R. H. Holzworth, C. J. Rodger, and J. B. Brundell, 2012: Far-field power of lightning strokes as measured by the World Wide Lightning Location Network. J. Atmos. Oceanic Technol., 29, 1102–1110, https://doi.org/10.1175/JTECH-D-11-00174.1.

    Article  Google Scholar 

  20. Jerauld, J., V. Ammins, and J. A. Cramer, 2005: An evaluation of the performance characteristics of the U.S. National Lightning Detection Network in Florida using rocket-triggered lightning. J. Geophys. Res., 110, D19106, https://doi.org/10.1029/2005JD005924.

    Article  Google Scholar 

  21. Lang, T. J., W. A. Lyons, S. A. Rutledge, J. D. Meyer, D. R. Mac-Gorman, and S. A. Cummer, 2010: Transient luminous events above two mesoscale convective systems: Storm structure and evolution. J. Geophys. Res., 115, A00E22, https://doi.org/10.1029/2009JA014500.

    Google Scholar 

  22. Lewis, E. A., R. B. Harvey, and J. E. Rasmussen, 1960: Hyperbolic direction finding with sferics of transatlantic origin. J. Geophys. Res., 65, 1879–1905, https://doi.org/10.1029/JZ065i007p01879.

    Article  Google Scholar 

  23. Li, D. S., M. Rubinstein, F. Rachidi, G. Diendorfer, W. Schulz, and G. P. Lu, 2017: Location accuracy evaluation of ToA-based lightning location systems over mountainous terrain. J. Geophys. Res., 122, 11760–11775, https://doi.org/10.1002/2017JD027520.

    Google Scholar 

  24. Li, J. B., S. Cummer, G. P. Lu, and L. Zigoneanu, 2012: Charge moment change and lightning-driven electric fields associated with negative sprites and halos. J. Geophys. Res., 117, A09310, https://doi.org/10.1029/2012JA017731.

    Google Scholar 

  25. Lu, G. P., S. A. Cummer, J. B. Li, F. Han, R. J. Blakeslee, and H. J. Christian, 2009: Charge transfer and in-cloud structure of large-charge-moment positive lightning strokes in a mesoscale convective system. Geophys. Res. Lett., 36, L15805, https://doi.org/10.1029/2009GL038880.

    Article  Google Scholar 

  26. Lu, G. P., and Coauthors, 2013: Coordinated observations of sprites and in-cloud lightning flash structure. J. Geophys. Res., 118, 6607–6632, https://doi.org/10.1002/jgrd.50459.

    Google Scholar 

  27. Lu, G. P., and Coauthors, 2016: Sprite produced by consecutive impulse charge transfers following a negative stroke: Observation and simulation. J. Geophys. Res., 121, 4082–4092, https://doi.org/10.1002/2015JD024644.

    Google Scholar 

  28. Lyons, W. A., 1996: Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems. J. Geophys. Res., 101(D23), 29641–29652, https://doi.org/10.1029/96JD01866.

    Article  Google Scholar 

  29. Lyons, W. A., 2006: The meteorology of transient luminous events-An introduction and overview, in Sprites, Elves and Intense Lightning Discharges, edited by M. Füllekrug, E. Mareev, and M. Rycroft, 19–56, Springer, Netherlands.

  30. Matsudo, Y., T. Suzuki, K. Michimoto, K. Myokei, and M. Hayakawa, 2009: Comparison of time delays of sprites induced by winter lightning flashes in the Japan Sea with those in the Pacific Ocean. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 101–111, https://doi.org/10.1016/j.jastp.2008.09.040.

    Article  Google Scholar 

  31. Nag, A., and Coauthors, 2011: Evaluation of U.S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004–2009. J. Geophys. Res., 116, D02123, https://doi.org/10.1029/2010JD014929.

    Article  Google Scholar 

  32. Neubert, T., and Coauthors, 2005: Coordinated observations of transient luminous events during the EuroSprite2003 campaign. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 807–820, https://doi.org/10.1016/j.jastp.2005.02.004.

    Article  Google Scholar 

  33. Pasko, V. P., U. S. Inan, T. F. Bell, and Y. N. Taranenko, 1997: Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res., 102, 4529–4561, https://doi.org/10.1029/96JA03528.

    Article  Google Scholar 

  34. Qin, Z. L., 2014: The observation of ionospheric D-layer based on the multi-station lightning detection system. M. S. thesis, University of Science and Technology of China. (in Chinese with English abstract)

    Google Scholar 

  35. Rodger, C. J., S. Werner, J. B. Brundell, E. H. Lay, N. R. Thomson, R. H. Holzworth, and R. L. Dowden, 2006: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Annales Geophysicae, 24, 3197–3214, https://doi.org/10.5194/angeo-24-3197-2006.

    Article  Google Scholar 

  36. S˜ao, F. T., D. D. Sentman, E. M. Wescott, O. Pinto Jr., O. Mendes Jr., and M. J. Taylor, 2003: Statistical analysis of space-time relationships between sprites and lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 65, 525–535, https://doi.org/10.1016/S1364-6826(02)00326-7.

    Article  Google Scholar 

  37. Savtchenko, A., R. Mitzeva, B. Tsenova, and S. Kolev, 2009: Analysis of lightning activity in two thunderstorm systems producing sprites in France. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 1277–1286, https://doi.org/10.1016/j.jastp.2009.04.010.

    Article  Google Scholar 

  38. Sentman, D. D., and E. M. Wescott, 1993: Observations of upper atmospheric optical flashes recorded from an aircraft. Geophys. Res. Lett., 20(24), 2857–2860, https://doi.org/10.1029/93GL02998.

    Article  Google Scholar 

  39. Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner, 1995: Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites. Geophys. Res. Lett., 22(10), 1205–1208, https://doi.org/10.1029/95GL00583.

    Article  Google Scholar 

  40. Sentman, D. D., and Coauthors, 2003: Simultaneous observations of mesospheric gravity waves and sprites generated by a Midwestern thunderstorm. Journal of Atmospheric and Solar- Terrestrial Physics, 65, 537–550, https://doi.org/10.1016/S1364-6826(02)00328-0.

    Article  Google Scholar 

  41. Shao, X.-M., E. H. Lay, and A. R. Jacobson, 2013: Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm. Nature Geoscience, 6, 29–33, https://doi.org/10.1038/ngeo1668.

    Article  Google Scholar 

  42. Soula, S., O. van der Velde, J. Montanyà, T. Neubert, O. Chanrion, and M. Ganot, 2009: Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: Two case studies. Atmospheric Research, 91(2–4), 514–528, https://doi.org/10.1016/j.atmosres.2008.06.017.

    Article  Google Scholar 

  43. Soula, S., J. Mlynarczyk, M. Füllekrug, N. Pineda, J.-F. Georgis, O. van der Velde, J. Montanyà, and F. Fabr´o, 2017: Dancing sprites: Detailed analysis of two case studies. J. Geophys. Res., 122, 3173–3192, https://doi.org/10.1002/2016JD025548.

    Google Scholar 

  44. Soula, S., and Coauthors, 2010: Characteristics and conditions of production of transient luminous events observed over a maritime storm. J. Geophys. Res., 115, D16118, https://doi.org/10.1029/2009JD012066.

    Article  Google Scholar 

  45. Soula, S., and Coauthors, 2015: Time and space correlation between sprites and their parent lightning flashes for a thunderstorm observed during the HyMeX campaign. J. Geophys. Res., 120, 11552–11574, https://doi.org/10.1002/2015JD023894.

    Google Scholar 

  46. Stanley, M., P. Krehbiel, M. Brook, C. Moore, W. Rison, and B. Abrahams, 1999: High speed video of initial sprite development. Geophys. Res. Lett., 26(20), 3201–3204, https://doi.org/10.1029/1999GL010673.

    Article  Google Scholar 

  47. Stolzenburg, M., W. D. Rust, B. F. Smull, and T. C. Marshall, 1998: Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems. J. Geophys. Res., 103, 14 059–14 078, https://doi.org/10.1029/97JD03546.

    Google Scholar 

  48. Su, H. T., R. R. Hsu, A. B. C. Chen, Y. J. Lee, and L. C. Lee, 2002: Observation of sprites over the Asian continent and over oceans around Taiwan. Geophys. Res. Lett., 29(4), 1044, https://doi.org/10.1029/2001GL013737.

    Article  Google Scholar 

  49. van der Velde, O. A., A´ Mika, S. Soula, C. Haldoupis, T. Neubert, and U. S. Inan, 2006: Observations of the relationship between sprite morphology and in-cloud lightning processes. J. Geophys. Res., 111, D15203, https://doi.org/10.1029/2005JD006879.

    Article  Google Scholar 

  50. van der Velde, O. A., J. Montanyà, S. Soula, N. Pineda, and J. Bech, 2010: Spatial and temporal evolution of horizontally extensive lightning discharges associated with spriteproducing positive cloud-to-ground flashes in northeastern Spain. J. Geophys. Res., 115, A00E56, https://doi.org/10.1029/2009JA014773.

    Google Scholar 

  51. van der Velde, O. A., J. Montanyà, S. Soula, N. Pineda, and J. Mlynarczyk, 2014: Bidirectional leader development in spriteproducing positive cloud-to-ground flashes: Origins and characteristics of positive and negative leaders. J. Geophys. Res., 119, 12 755–12 779, https://doi.org/10.1002/2013JD021291.

    Article  Google Scholar 

  52. Wang, Z. C., J. Yang, G. P. Lu, D. X. Liu, Y. Wang, G. Xiao, and X. S. Qie, 2015: Sprites over a mesoscale convective system in North China and the corresponding characteristics of radar echo and lightning. Chinese Journal of Atmospheric Sciences, 39(4), 839–848, https://doi.org/10.3878/j.issn.1006-9895.1412.14232.

    Google Scholar 

  53. Williams, E. R., 1998: The positive charge reservoir for spriteproducing lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 60, 689–692, https://doi.org/10.1016/S1364-6826(98)00030-3.

    Article  Google Scholar 

  54. Williams, E., and Y. Yair, 2006: The microphysical and electrical properties of sprite-producing thunderstorms, in Elves and Intense Lightning Discharges. NATO Sci. Ser. Ser. II.225, edited by M. Füllekrug, E. A. Mareev, and M. J. Rycroft, 237–247, Springer, New York.

    Google Scholar 

  55. Winckler, J. R., 1995: Further observations of cloud-ionosphere electrical discharges above thunderstorms. J. Geophys. Res., 100(D7), 14335–14345, https://doi.org/10.1029/95JD00082.

    Article  Google Scholar 

  56. Yair, Y., R. Aviv, G. Ravid, R. Yaniv, B. Ziv, and C. Price, 2006: Evidence for synchronicity of lightning activity in networks of spatially remote thunderstorms. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 1401–1415, https://doi.org/10.1016/j.jastp.2006.05.012.

    Article  Google Scholar 

  57. Yair, Y. Y., R. Aviv, and G. Ravid, 2009: Clustering and synchronization of lightning flashes in adjacent thunderstorm cells from lightning location networks data. J. Geophys. Res., 114, D09210, https://doi.org/10.1029/2008JD010738.

    Google Scholar 

  58. Yang, J., X. S. Qie, G. S. Zhang, Y. Zhao, and T. Zhang, 2008: Red sprites over thunderstorms in the coast of Shandong Province, China. Chinese Science Bulletin, 53(7), 1079–1086, https://doi.org/10.1007/s11434-008-0141-8.

    Google Scholar 

  59. Yang, J., M. R. Yang, C. Liu, and G. L. Feng, 2013: Case studies of sprite-producing and non-sprite-producing summer thunderstorms. Adv. Atmos. Sci., 30(6), 1786–1808, https://doi.org/10.1007/s00376-013-2120-5.

    Article  Google Scholar 

  60. Yang, J., G. P. Lu, L. J. Lee, and G. L. Feng, 2015: Longdelayed bright dancing sprite with large horizontal displacement from its parent flash. Journal of Atmospheric and Solar-Terrestrial Physics, 129, 1–5, https://doi.org/10.1016/j.jastp.2015.04.001.

    Article  Google Scholar 

  61. Yu, B. K., and Coauthors, 2015: Evidence for lightning-associated enhancement of the ionospheric sporadic Elayer dependent on lightning stroke energy. J. Geophys. Res., 120, 9202–9212, https://doi.org/10.1002/2015JA021575.

    Article  Google Scholar 

  62. Yu, B. K., and Coauthors, 2017: The enhancement of neutral metal Na layer above thunderstorms. Geophys. Res. Lett., 44, 9555–9563, https://doi.org/10.1002/2017GL074977.

    Article  Google Scholar 

  63. Zhang, H. B., and Coauthors, 2016: Locating narrow bipolar events with single-station measurement of low-frequency magnetic fields. Journal of Atmospheric and Solar-Terrestrial Physics, 143–144, 88–101, https://doi.org/10.1016/j.jastp.2016.03.009.

    Article  Google Scholar 

  64. Ziskind, I., and M. Wax, 1988: Maximum likelihood localization of multiple sources by alternating projection. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(10), 1553–1560, https://doi.org/10.1109/29.7543.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Qinghe ZHANG, Shandong University (Weihai), and Mr. Shiwei FAN, Xiguan Elementary School of Dingxiang County (in Xinzhou, Shanxi Province), for hosting the broadband magnetic sensor as the key component of LERP in China. This work was supported by the National Key Basic Research and Development (973) Program of China (Grant No. 2014CB441405), the Open Research Program of the Key Laboratory of Meteorological Disaster (Nanjing University of Information Science and Technology) of the Ministry of Education (Grant No. KLME1414), the National Natural Science Foundation of China (Grant No. 41574179), the Natural Science Foundation of Excellent Youth Program of China (Grant No. 41622501), and “The Hundred Talents Program” of the Chinese Academy of Sciences (Grant No. 2013068). The authors also wish to thank WWLLN (http://wwlln.net), a collaboration of more 40 universities and institutions, for providing the lightning location data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gaopeng Lu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, A., Lu, G., Zhang, H. et al. Locating Parent Lightning Strokes of Sprites Observed over a Mesoscale Convective System in Shandong Province, China. Adv. Atmos. Sci. 35, 1396–1414 (2018). https://doi.org/10.1007/s00376-018-7306-4

Download citation

Key words

  • red sprites
  • positive cloud-to-ground strokes (+CGs)
  • mesoscale convective system (MCS)

关键词

  • 红色精灵
  • 正极性地闪回击(+CGs)
  • 中尺度对流系统(MCS)