Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 11, pp 1396–1414 | Cite as

Locating Parent Lightning Strokes of Sprites Observed over a Mesoscale Convective System in Shandong Province, China

  • Anjing Huang
  • Gaopeng Lu
  • Hongbo Zhang
  • Feifan Liu
  • Yanfeng Fan
  • Baoyou Zhu
  • Jing Yang
  • Zhichao Wang
Original Paper

Abstract

In this paper, we report the location results for the parent lightning strokes of more than 30 red sprites observed over an asymmetric mesoscale convective system (MCS) on 30 July 2015 in Shandong Province, China, with a long-baseline lightning location network of very-low-frequency/low-frequency magnetic field sensors. The results show that almost all of these cloud-to-ground (CG) strokes are produced during the mature stage of the MCS, and are predominantly located in the trailing stratiform region, which is similar to analyses of sprite-productive MCSs in North America and Europe. Comparison between the location results for the sprite-producing CG strokes and those provided by the World Wide Lightning Location Network (WWLLN) indicates that the location accuracy of WWLLN for intense CG strokes in Shandong Province is typically within 10 km, which is consistent with the result based on analysis of 2838 sprite-producing CG strokes in the continental United States. Also, we analyze two cases where some minor lightning discharges in the parent flash of sprites can also be located, providing an approach to confine the thundercloud region tapped by the sprite-producing CG strokes.

Key words

red sprites positive cloud-to-ground strokes (+CGs) mesoscale convective system (MCS) 

摘要

本文利用长基线闪电定位网中的超低频和低频磁天线观测到了2015年夏季中国山东省一次不对称中尺度对流系统(MCS)上空产生的30多次红色精灵(red sprite)瞬态发光事件, 并得到了红色精灵母体闪电的自主定位结果. 定位结果显示, 几乎所有红色精灵母体地闪(CG)回击都产生在MCS的成熟期, 主要位于MCS尾部层状云区, 这和北美与欧洲对产生sprite的MCS的研究结果一致. 对比红色精灵母体闪电的定位结果和全球闪电定位网(WWLLN)提供的定位数据, 发现WWLLN对于山东省强地闪回击的定位误差在10公里以内, 这和在美国大陆基于2838次红色精灵母体闪电的相关研究结果一致. 此外, 我们分析了两个可以定位舞蹈状红色精灵母体闪电中微小放电过程的个例, 提供了一种估算母体闪电在雷暴云中总放电区域的方法.

关键词

红色精灵 正极性地闪回击(+CGs) 中尺度对流系统(MCS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Prof. Qinghe ZHANG, Shandong University (Weihai), and Mr. Shiwei FAN, Xiguan Elementary School of Dingxiang County (in Xinzhou, Shanxi Province), for hosting the broadband magnetic sensor as the key component of LERP in China. This work was supported by the National Key Basic Research and Development (973) Program of China (Grant No. 2014CB441405), the Open Research Program of the Key Laboratory of Meteorological Disaster (Nanjing University of Information Science and Technology) of the Ministry of Education (Grant No. KLME1414), the National Natural Science Foundation of China (Grant No. 41574179), the Natural Science Foundation of Excellent Youth Program of China (Grant No. 41622501), and “The Hundred Talents Program” of the Chinese Academy of Sciences (Grant No. 2013068). The authors also wish to thank WWLLN (http://wwlln.net), a collaboration of more 40 universities and institutions, for providing the lightning location data.

References

  1. Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau Jr., 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res., 115, D18206,  https://doi.org/10.1029/2009JD013411.CrossRefGoogle Scholar
  2. Asano, T., T. Suzuki, M. Hayakawa, and M. G. Cho, 2009: Three-dimensional EM computer simulation on sprite initiation above a horizontal lightning discharge. Journal of Atmospheric and Solar-Terrestrial Physics, 71(8–9), 983–990,  https://doi.org/10.1016/j.jastp.2009.04.003.CrossRefGoogle Scholar
  3. Bell, T. F., S. C. Reising, and U. S. Inan, 1998: Intense continuing currents following positive cloud-to-ground lightning associated with red sprites. Geophys. Res. Lett., 25(8), 1285–1288,  https://doi.org/10.1029/98GL00734.CrossRefGoogle Scholar
  4. Biagi, C. J., K. L. Cummins, K. E. Kehoe, and E. P. Krider, 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208,  https://doi.org/10.1029/2006JD007341.CrossRefGoogle Scholar
  5. Boccippio, D. J., E. R. Williams, S. J. Heckman, W. A. Lyons., I. T. Baker, and R. Boldi, 1995: Sprites, ELF transients, and positive ground strokes. Science, 269, 1088–1091,  https://doi.org/10.1126/science.269.5227.1088.CrossRefGoogle Scholar
  6. Carey, L. D., M. J. Murphy, T. L. McCormick, and N. W. S. Demetriades, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res., 110, D03105,  https://doi.org/10.1029/2003JD004371.CrossRefGoogle Scholar
  7. Chen, A. B., and Coauthors, 2008: Global distributions and occurrence rates of transient luminous events. J. Geophys. Res., 113, A08306,  https://doi.org/10.1029/2008JA013101.Google Scholar
  8. Connaughton, V., and Coauthors, 2010: Associations between Fermi Gamma-ray Burst Monitor terrestrial gamma ray flashes and sferics from the World Wide Lightning Location Network. J. Geophys. Res., 115, A12307,  https://doi.org/10.1029/2010JA015681.CrossRefGoogle Scholar
  9. Cummer, S. A., and W. A. Lyons, 2005: Implications of lightning charge moment changes for sprite initiation. J. Geophys. Res., 110, A04304,  https://doi.org/10.1029/2004JA010812.CrossRefGoogle Scholar
  10. Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103(D8), 9035–9044,  https://doi.org/10.1029/98JD00153.CrossRefGoogle Scholar
  11. Fishman, G. J., and Coauthors, 1994: Discovery of intense Gamma-ray flashes of atmospheric origin. Science, 264, 1313–1316,  https://doi.org/10.1126/science.264.5163.1313.CrossRefGoogle Scholar
  12. Franz, R. C., R. J. Nemzek, and J. R. Winckler, 1990: Television image of a large upward electrical discharge above a thunderstorm system. Science, 249, 48–51,  https://doi.org/10.1126/10.1126/science.249.4964.48.CrossRefGoogle Scholar
  13. Füllekrug, M., D. R. Moudry, G. Dawes, and D. D. Sentman, 2001: Mesospheric sprite current triangulation. J. Geophys. Res., 16(D17), 20189–20194,  https://doi.org/10.1029/2001JD900075.CrossRefGoogle Scholar
  14. Fuquay, D. M., 1982: Positive cloud-to-ground lightning in summer thunderstorms. J. Geophys. Res., 87, 7131–7140,  https://doi.org/10.1029/JC087iC09p07131.CrossRefGoogle Scholar
  15. Gomes, C., and V. Cooray, 1998: Long impulse currents associated with positive return strokes. Journal of Atmospheric and Solar-Terrestrial Physics, 60, 693–699,  https://doi.org/10.1016/S1364-6826(98)00039-X.CrossRefGoogle Scholar
  16. Harris, M., 2007: Optimizing parallel reduction in CUDA. NIBVIDA Developer Technology, 45 pp.Google Scholar
  17. Houze, R. A., Jr., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613–654,  https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.CrossRefGoogle Scholar
  18. Huang, E., E. Williams, R. Boldi, S. Heckman, W. Lyons, M. Taylor, T. Nelson, and C. Wong, 1999: Criteria for sprites and elves based on Schumann resonance observations. J. Geophys. Res., 104, 16943–16964,  https://doi.org/10.1029/1999JD900139.CrossRefGoogle Scholar
  19. Hutchins, M. L., R. H. Holzworth, C. J. Rodger, and J. B. Brundell, 2012: Far-field power of lightning strokes as measured by the World Wide Lightning Location Network. J. Atmos. Oceanic Technol., 29, 1102–1110,  https://doi.org/10.1175/JTECH-D-11-00174.1.CrossRefGoogle Scholar
  20. Jerauld, J., V. Ammins, and J. A. Cramer, 2005: An evaluation of the performance characteristics of the U.S. National Lightning Detection Network in Florida using rocket-triggered lightning. J. Geophys. Res., 110, D19106,  https://doi.org/10.1029/2005JD005924.CrossRefGoogle Scholar
  21. Lang, T. J., W. A. Lyons, S. A. Rutledge, J. D. Meyer, D. R. Mac-Gorman, and S. A. Cummer, 2010: Transient luminous events above two mesoscale convective systems: Storm structure and evolution. J. Geophys. Res., 115, A00E22,  https://doi.org/10.1029/2009JA014500.Google Scholar
  22. Lewis, E. A., R. B. Harvey, and J. E. Rasmussen, 1960: Hyperbolic direction finding with sferics of transatlantic origin. J. Geophys. Res., 65, 1879–1905,  https://doi.org/10.1029/JZ065i007p01879.CrossRefGoogle Scholar
  23. Li, D. S., M. Rubinstein, F. Rachidi, G. Diendorfer, W. Schulz, and G. P. Lu, 2017: Location accuracy evaluation of ToA-based lightning location systems over mountainous terrain. J. Geophys. Res., 122, 11760–11775,  https://doi.org/10.1002/2017JD027520.Google Scholar
  24. Li, J. B., S. Cummer, G. P. Lu, and L. Zigoneanu, 2012: Charge moment change and lightning-driven electric fields associated with negative sprites and halos. J. Geophys. Res., 117, A09310,  https://doi.org/10.1029/2012JA017731.Google Scholar
  25. Lu, G. P., S. A. Cummer, J. B. Li, F. Han, R. J. Blakeslee, and H. J. Christian, 2009: Charge transfer and in-cloud structure of large-charge-moment positive lightning strokes in a mesoscale convective system. Geophys. Res. Lett., 36, L15805,  https://doi.org/10.1029/2009GL038880.CrossRefGoogle Scholar
  26. Lu, G. P., and Coauthors, 2013: Coordinated observations of sprites and in-cloud lightning flash structure. J. Geophys. Res., 118, 6607–6632,  https://doi.org/10.1002/jgrd.50459.Google Scholar
  27. Lu, G. P., and Coauthors, 2016: Sprite produced by consecutive impulse charge transfers following a negative stroke: Observation and simulation. J. Geophys. Res., 121, 4082–4092,  https://doi.org/10.1002/2015JD024644.Google Scholar
  28. Lyons, W. A., 1996: Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems. J. Geophys. Res., 101(D23), 29641–29652,  https://doi.org/10.1029/96JD01866.CrossRefGoogle Scholar
  29. Lyons, W. A., 2006: The meteorology of transient luminous events-An introduction and overview, in Sprites, Elves and Intense Lightning Discharges, edited by M. Füllekrug, E. Mareev, and M. Rycroft, 19–56, Springer, Netherlands.Google Scholar
  30. Matsudo, Y., T. Suzuki, K. Michimoto, K. Myokei, and M. Hayakawa, 2009: Comparison of time delays of sprites induced by winter lightning flashes in the Japan Sea with those in the Pacific Ocean. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 101–111,  https://doi.org/10.1016/j.jastp.2008.09.040.CrossRefGoogle Scholar
  31. Nag, A., and Coauthors, 2011: Evaluation of U.S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004–2009. J. Geophys. Res., 116, D02123,  https://doi.org/10.1029/2010JD014929.CrossRefGoogle Scholar
  32. Neubert, T., and Coauthors, 2005: Coordinated observations of transient luminous events during the EuroSprite2003 campaign. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 807–820,  https://doi.org/10.1016/j.jastp.2005.02.004.CrossRefGoogle Scholar
  33. Pasko, V. P., U. S. Inan, T. F. Bell, and Y. N. Taranenko, 1997: Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res., 102, 4529–4561,  https://doi.org/10.1029/96JA03528.CrossRefGoogle Scholar
  34. Qin, Z. L., 2014: The observation of ionospheric D-layer based on the multi-station lightning detection system. M. S. thesis, University of Science and Technology of China. (in Chinese with English abstract)Google Scholar
  35. Rodger, C. J., S. Werner, J. B. Brundell, E. H. Lay, N. R. Thomson, R. H. Holzworth, and R. L. Dowden, 2006: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Annales Geophysicae, 24, 3197–3214,  https://doi.org/10.5194/angeo-24-3197-2006.CrossRefGoogle Scholar
  36. S˜ao, F. T., D. D. Sentman, E. M. Wescott, O. Pinto Jr., O. Mendes Jr., and M. J. Taylor, 2003: Statistical analysis of space-time relationships between sprites and lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 65, 525–535,  https://doi.org/10.1016/S1364-6826(02)00326-7.CrossRefGoogle Scholar
  37. Savtchenko, A., R. Mitzeva, B. Tsenova, and S. Kolev, 2009: Analysis of lightning activity in two thunderstorm systems producing sprites in France. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 1277–1286,  https://doi.org/10.1016/j.jastp.2009.04.010.CrossRefGoogle Scholar
  38. Sentman, D. D., and E. M. Wescott, 1993: Observations of upper atmospheric optical flashes recorded from an aircraft. Geophys. Res. Lett., 20(24), 2857–2860,  https://doi.org/10.1029/93GL02998.CrossRefGoogle Scholar
  39. Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner, 1995: Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites. Geophys. Res. Lett., 22(10), 1205–1208,  https://doi.org/10.1029/95GL00583.CrossRefGoogle Scholar
  40. Sentman, D. D., and Coauthors, 2003: Simultaneous observations of mesospheric gravity waves and sprites generated by a Midwestern thunderstorm. Journal of Atmospheric and Solar- Terrestrial Physics, 65, 537–550,  https://doi.org/10.1016/S1364-6826(02)00328-0.CrossRefGoogle Scholar
  41. Shao, X.-M., E. H. Lay, and A. R. Jacobson, 2013: Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm. Nature Geoscience, 6, 29–33,  https://doi.org/10.1038/ngeo1668.CrossRefGoogle Scholar
  42. Soula, S., O. van der Velde, J. Montanyà, T. Neubert, O. Chanrion, and M. Ganot, 2009: Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: Two case studies. Atmospheric Research, 91(2–4), 514–528,  https://doi.org/10.1016/j.atmosres.2008.06.017.CrossRefGoogle Scholar
  43. Soula, S., J. Mlynarczyk, M. Füllekrug, N. Pineda, J.-F. Georgis, O. van der Velde, J. Montanyà, and F. Fabr´o, 2017: Dancing sprites: Detailed analysis of two case studies. J. Geophys. Res., 122, 3173–3192,  https://doi.org/10.1002/2016JD025548.Google Scholar
  44. Soula, S., and Coauthors, 2010: Characteristics and conditions of production of transient luminous events observed over a maritime storm. J. Geophys. Res., 115, D16118,  https://doi.org/10.1029/2009JD012066.CrossRefGoogle Scholar
  45. Soula, S., and Coauthors, 2015: Time and space correlation between sprites and their parent lightning flashes for a thunderstorm observed during the HyMeX campaign. J. Geophys. Res., 120, 11552–11574,  https://doi.org/10.1002/2015JD023894.Google Scholar
  46. Stanley, M., P. Krehbiel, M. Brook, C. Moore, W. Rison, and B. Abrahams, 1999: High speed video of initial sprite development. Geophys. Res. Lett., 26(20), 3201–3204,  https://doi.org/10.1029/1999GL010673.CrossRefGoogle Scholar
  47. Stolzenburg, M., W. D. Rust, B. F. Smull, and T. C. Marshall, 1998: Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems. J. Geophys. Res., 103, 14 059–14 078,  https://doi.org/10.1029/97JD03546.Google Scholar
  48. Su, H. T., R. R. Hsu, A. B. C. Chen, Y. J. Lee, and L. C. Lee, 2002: Observation of sprites over the Asian continent and over oceans around Taiwan. Geophys. Res. Lett., 29(4), 1044,  https://doi.org/10.1029/2001GL013737.CrossRefGoogle Scholar
  49. van der Velde, O. A., A´ Mika, S. Soula, C. Haldoupis, T. Neubert, and U. S. Inan, 2006: Observations of the relationship between sprite morphology and in-cloud lightning processes. J. Geophys. Res., 111, D15203,  https://doi.org/10.1029/2005JD006879.CrossRefGoogle Scholar
  50. van der Velde, O. A., J. Montanyà, S. Soula, N. Pineda, and J. Bech, 2010: Spatial and temporal evolution of horizontally extensive lightning discharges associated with spriteproducing positive cloud-to-ground flashes in northeastern Spain. J. Geophys. Res., 115, A00E56,  https://doi.org/10.1029/2009JA014773.Google Scholar
  51. van der Velde, O. A., J. Montanyà, S. Soula, N. Pineda, and J. Mlynarczyk, 2014: Bidirectional leader development in spriteproducing positive cloud-to-ground flashes: Origins and characteristics of positive and negative leaders. J. Geophys. Res., 119, 12 755–12 779,  https://doi.org/10.1002/2013JD021291.CrossRefGoogle Scholar
  52. Wang, Z. C., J. Yang, G. P. Lu, D. X. Liu, Y. Wang, G. Xiao, and X. S. Qie, 2015: Sprites over a mesoscale convective system in North China and the corresponding characteristics of radar echo and lightning. Chinese Journal of Atmospheric Sciences, 39(4), 839–848,  https://doi.org/10.3878/j.issn.1006-9895.1412.14232.Google Scholar
  53. Williams, E. R., 1998: The positive charge reservoir for spriteproducing lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 60, 689–692,  https://doi.org/10.1016/S1364-6826(98)00030-3.CrossRefGoogle Scholar
  54. Williams, E., and Y. Yair, 2006: The microphysical and electrical properties of sprite-producing thunderstorms, in Elves and Intense Lightning Discharges. NATO Sci. Ser. Ser. II.225, edited by M. Füllekrug, E. A. Mareev, and M. J. Rycroft, 237–247, Springer, New York.Google Scholar
  55. Winckler, J. R., 1995: Further observations of cloud-ionosphere electrical discharges above thunderstorms. J. Geophys. Res., 100(D7), 14335–14345,  https://doi.org/10.1029/95JD00082.CrossRefGoogle Scholar
  56. Yair, Y., R. Aviv, G. Ravid, R. Yaniv, B. Ziv, and C. Price, 2006: Evidence for synchronicity of lightning activity in networks of spatially remote thunderstorms. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 1401–1415,  https://doi.org/10.1016/j.jastp.2006.05.012.CrossRefGoogle Scholar
  57. Yair, Y. Y., R. Aviv, and G. Ravid, 2009: Clustering and synchronization of lightning flashes in adjacent thunderstorm cells from lightning location networks data. J. Geophys. Res., 114, D09210,  https://doi.org/10.1029/2008JD010738.Google Scholar
  58. Yang, J., X. S. Qie, G. S. Zhang, Y. Zhao, and T. Zhang, 2008: Red sprites over thunderstorms in the coast of Shandong Province, China. Chinese Science Bulletin, 53(7), 1079–1086,  https://doi.org/10.1007/s11434-008-0141-8.Google Scholar
  59. Yang, J., M. R. Yang, C. Liu, and G. L. Feng, 2013: Case studies of sprite-producing and non-sprite-producing summer thunderstorms. Adv. Atmos. Sci., 30(6), 1786–1808,  https://doi.org/10.1007/s00376-013-2120-5.CrossRefGoogle Scholar
  60. Yang, J., G. P. Lu, L. J. Lee, and G. L. Feng, 2015: Longdelayed bright dancing sprite with large horizontal displacement from its parent flash. Journal of Atmospheric and Solar-Terrestrial Physics, 129, 1–5,  https://doi.org/10.1016/j.jastp.2015.04.001.CrossRefGoogle Scholar
  61. Yu, B. K., and Coauthors, 2015: Evidence for lightning-associated enhancement of the ionospheric sporadic Elayer dependent on lightning stroke energy. J. Geophys. Res., 120, 9202–9212,  https://doi.org/10.1002/2015JA021575.CrossRefGoogle Scholar
  62. Yu, B. K., and Coauthors, 2017: The enhancement of neutral metal Na layer above thunderstorms. Geophys. Res. Lett., 44, 9555–9563,  https://doi.org/10.1002/2017GL074977.CrossRefGoogle Scholar
  63. Zhang, H. B., and Coauthors, 2016: Locating narrow bipolar events with single-station measurement of low-frequency magnetic fields. Journal of Atmospheric and Solar-Terrestrial Physics, 143–144, 88–101,  https://doi.org/10.1016/j.jastp.2016.03.009.CrossRefGoogle Scholar
  64. Ziskind, I., and M. Wax, 1988: Maximum likelihood localization of multiple sources by alternating projection. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(10), 1553–1560,  https://doi.org/10.1109/29.7543.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anjing Huang
    • 1
    • 2
  • Gaopeng Lu
    • 1
    • 3
    • 4
  • Hongbo Zhang
    • 1
  • Feifan Liu
    • 5
  • Yanfeng Fan
    • 6
  • Baoyou Zhu
    • 5
  • Jing Yang
    • 1
  • Zhichao Wang
    • 7
  1. 1.Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina
  4. 4.Key Laboratory of Meteorological Disaster of Ministry of EducationNanjing University of Information Science and TechnologyNanjingChina
  5. 5.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  6. 6.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  7. 7.Atmospheric Observation Center of Beijing Meteorological BureauBeijingChina

Personalised recommendations