Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 8, pp 955–964 | Cite as

Skillful Seasonal Forecasts of Summer Surface Air Temperature in Western China by Global Seasonal Forecast System Version 5

  • Chaofan Li
  • Riyu Lu
  • Philip E. Bett
  • Adam A. Scaife
  • Nicola Martin
Original Paper

Abstract

Variations of surface air temperature (SAT) are key in affecting the hydrological cycle, ecosystems and agriculture in western China in summer. This study assesses the seasonal forecast skill and reliability of SAT in western China, using the GloSea5 operational forecast system from the UK Met Office. Useful predictions are demonstrated, with considerable skill over most regions of western China. The temporal correlation coefficients of SAT between model predictions and observations are larger than 0.6, in both northwestern China and the Tibetan Plateau. There are two important sources of skill for these predictions in western China: interannual variation of SST in the western Pacific and the SST trend in the tropical Pacific. The tropical SST change in the recent two decades, with a warming in the western Pacific and cooling in the eastern Pacific, which is reproduced well by the forecast system, provides a large contribution to the skill of SAT in northwestern China. Additionally, the interannual variation of SST in the western Pacific gives rise to the reliable prediction of SAT around the Tibetan Plateau. It modulates convection around the Maritime Continent and further modulates the variation of SAT on the Tibetan Plateau via the surrounding circulation. This process is evident irrespective of detrending both in observations and the model predictions, and acts as a source of skill in predictions for the Tibetan Plateau. The predictability and reliability demonstrated in this study is potentially useful for climate services providing early warning of extreme climate events and could imply useful economic benefits.

Key words

seasonal forecast western China surface air temperature predictability warming trend 

摘要

我国西部地区夏季气温的变化对水循环, 生态系统和农作物产量都有着重要影响. 本文利用英国气象局的GloSea5预测系统, 评估了我国西部气温的季节预测技巧和可靠性. 研究发现, 模式对我国西部地区近地面气温的预测技巧较高. 对应气候模式的预测结果与观测的时间相关系数在西部大部分地区超过了0.6, 包括西北和青藏高原地区. 这些高预测技巧有两个重要的物理来源:西太平洋地区海温的年际变化和热带太平地区海温的趋势变化. 其中, 近二十年来热带太平洋的海温趋势, 包括热带西太的增暖和东太的偏冷, 对我国西北地区气温的预测技巧贡献显著. 而青藏高原地区气温的高预测技巧主要受到西太平洋海温年际变化的影响. 西太平洋海温可以影响海洋性大陆地区的对流, 调制青藏高原地区环流年际变化, 进而对地表气温产生重要影响. 这个调制过程在观测和模式中都得到了很好的表现, 为青藏高原气温预测提供了重要的技巧来源. 本研究所展示的可预测性和可靠性度有助于我国气候服务业务的开展, 可以为极端气候事件提供有效的前期预警, 并进一步保护人民的生命和经济财产损失.

关键词

季节预测 中国西部地区 地表气温 可预测性 增暖趋势 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2016YFA0600603) and the National Natural Science Foundation of China (Grant Nos. U1502233, 41320104007 and 41775083). This work and its contributors were also supported by the UK–China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund.

References

  1. Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–Present). Journal of Hydrometeorology, 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.CrossRefGoogle Scholar
  2. Best, M. J., and Coauthors, 2011: The joint UK land environment simulator (JULES), model description–part 1: Energy and water fluxes. Geoscientific model Development, 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011. CrossRefGoogle Scholar
  3. Bett, P. E., and Coauthors, 2017: Skill and reliability of seasonal forecasts for the Chinese energy sector. Journal of Applied Meteorology and Climatology, 56, 3099–3114, https://doi.org/10.1175/jamc-d-17-0070.1. CrossRefGoogle Scholar
  4. Bett, P. E., and Coauthors, 2018: Seasonal forecasts of the summer 2016 Yangtze River basin rainfall. Atmospheric and Oceanic Physics, https://doi.org/10.1007/s00376-018-7210-y. Google Scholar
  5. Camp, J., M. Roberts, C. MacLachlan, E. Wallace, L. Hermanson, A. Brookshaw, A. Arribas, and A. A. Scaife, 2015: Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 2206–2219, https://doi.org/10.1002/qj.2516. CrossRefGoogle Scholar
  6. Chen, J. M., P. Zhao, H. L. Liu, and X. Y. Guo, 2009: Modeling impacts of vegetation in western China on the summer climate of northwestern China. Adv. Atmos. Sci., 26, 803–812, https://doi.org/10.1007/s00376-009-9018-2. CrossRefGoogle Scholar
  7. Clark, R. T., P. E. Bett, H. E. Thornton, and A. A. Scaife, 2017: Skilful seasonal predictions for the European energy industry. Environmental Research Letters, 12, 024002, https://doi.org/10.1088/1748-9326/aa57ab. CrossRefGoogle Scholar
  8. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828. CrossRefGoogle Scholar
  9. Ding, H., R. J. Greatbatch, M. Latif, W. Park, and R. Gerdes, 2013: Hindcast of the 1976/77 and 1998/99 climate shifts in the Pacific. J. Climate, 26, 7650–7661, https://doi.org/10.1175/jclid-12-00626.1. CrossRefGoogle Scholar
  10. Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 3483–3505, https://doi.org/10.1175/jcli3473.1. CrossRefGoogle Scholar
  11. Eade, R., D. Smith, A. Scaife, E. Wallace, N. Dunstone, L. Hermanson, and N. Robinson, 2014: Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett., 41, 5620–5628, https://doi.org/10.1002/2014GL061146. CrossRefGoogle Scholar
  12. Gamo, M., 1996: Thickness of the dry convection and large-scale subsidence above deserts. Bound.-Layer Meteor., 79, 265–278, https://doi.org/10.1007/bf00119441. CrossRefGoogle Scholar
  13. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, https://doi.org/10.1002/qj.49710644905. CrossRefGoogle Scholar
  14. Hong, X. W., and R. Lu, 2016: The meridional displacement of the summer Asian jet, Silk Road Pattern, and tropical SST anomalies. J. Climate, 29, 3753–3766, https://doi.org/10.1175/jcli-d-15-0541.1. CrossRefGoogle Scholar
  15. Huang, B., and Coauthors, 2015: Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911–930, https://doi.org/10.1175/jcli-d-14-00006.1. Google Scholar
  16. Huang, G., X. Qu, and K. Hu, 2011: The impact of the tropical Indian Ocean on South Asian high in boreal summer. Adv. Atmos. Sci., 28, 421–432, https://doi.org/10.1007/s00376-010-9224-y. CrossRefGoogle Scholar
  17. Inoue, T., and J. Matsumoto, 2004: A Comparison of summer sea level pressure over East Eurasia between NCEP-NCAR reanalysis and ERA-40 for the period 1960–99. J. Meteor. Soc. Japan., 82, 951–958, https://doi.org/10.2151/jmsj.2004.951. CrossRefGoogle Scholar
  18. Kosaka, Y., and S.-P. Xie, 2016: The tropical Pacific as a key pacemaker of the variable rates of global warming. Nature Geoscience, 9, 669–674, https://doi.org/10.1038/ngeo2770. CrossRefGoogle Scholar
  19. Kosaka, Y., J. S. Chowdary, S.-P. Xie, Y.-M. Min, and J.-Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the Northwestern Pacific. J. Climate, 25, 7574–7589, https://doi.org/10.1175/JCLI-D-12-00009.1. CrossRefGoogle Scholar
  20. Kumar, A., 2009: Finite samples and uncertainty estimates for skill measures for seasonal prediction. Mon.Wea. Rev., 137, 2622–2631, https://doi.org/10.1175/2009MWR2814.1. CrossRefGoogle Scholar
  21. Kumar, A., M. Y. Chen, and W. Wang, 2013: Understanding prediction skill of seasonal mean precipitation over the tropics. J. Climate, 26, 5674–5681, https://doi.org/10.1175/JCLI-D-12-00731.1. CrossRefGoogle Scholar
  22. Li, C. F., and Coauthors, 2016: Skillful seasonal prediction of Yangtze river valley summer rainfall. Environmental Research Letters, 11, 094002. https://doi.org/10.1088/1748-9326/11/9/094002. CrossRefGoogle Scholar
  23. Li, C. F., R. Y. Lu, and B. W. Dong, 2012: Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES. Climate Dyn., 39, 329–346, https://doi.org/10.1007/s00382-011-1274-z. CrossRefGoogle Scholar
  24. Li, C. F., R. Y. Lu, and G. H. Chen, 2017: Promising prediction of the monsoon trough and its implication for tropical cyclone activity over the western North Pacific. Environmental Research Letters, 12, 074027, https://doi.org/10.1088/1748-9326/aa71bd. CrossRefGoogle Scholar
  25. Lin, Z. D., and R. Y. Lu, 2016: Impact of summer rainfall over southern-central Europe on circumglobal teleconnection. Atmospheric Science Letters, 17, 258–262, https://doi.org/10.1002/asl.652. CrossRefGoogle Scholar
  26. Lin, Z. D., F. Liu, B. Wang, R. Y. Lu, and X. Qu, 2017: Southern European rainfall reshapes the early-summer circumglobal teleconnection after the late 1970s. Climate Dyn., 48, 3855–3868, https://doi.org/10.1007/s00382-016-3306-1. CrossRefGoogle Scholar
  27. Lu, B., A. A. Scaife, N. Dunstone, D. Smith, H.-L. Ren, Y. Liu, and R. Eade, 2017: Skillful seasonal predictions of winter precipitation over southern China. Environmental Research Letters, 12, 074021, https://doi.org/10.1088/1748-9326/aa739a. CrossRefGoogle Scholar
  28. Ma, F., X. Yuan, and A. Z. Ye, 2015: Seasonal drought predictability and forecast skill over China. J. Geophys. Res., 120, 8264–8275, https://doi.org/10.1002/2015JD023185. Google Scholar
  29. MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072–1084, https://doi.org/10.1002/qj.2396. CrossRefGoogle Scholar
  30. Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan., 44, 25–43, https://doi.org/10.2151/jmsj1965.44.125. CrossRefGoogle Scholar
  31. Megann, A., D. Storkey, Y. Aksenov, S. Alderson, D. Calvert, T. Graham, P. Hyder, J. Siddorn, and B. Sinha, 2014: GO5.0: The joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications. Geoscientific Model Development, 7, 1069–1092, https://doi.org/10.5194/gmd-7-1069-2014. CrossRefGoogle Scholar
  32. Monerie, P.-A., J. Robson, B. Dong, and N. Dunstone, 2017: A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia? Climate Dyn., https://doi.org/10.1007/s00382-017-3935-z. Google Scholar
  33. Palin, E. J., A. A. Scaife, E. Wallace, E. C. D. Pope, A. Arribas, and A. Brookshaw, 2016: Skillful seasonal forecasts of winter disruption to the U.K. transport system. Journal of Applied Meteorology and Climatology, 55, 325–344, https://doi.org/10.1175/jamc-d-15-0102.1. CrossRefGoogle Scholar
  34. Qian, Y. F., N. F. Zhou, and Y. Bi, 2004: Analyses of the impacts of upper-level temperature and height anomalies on surface air temperature and precipitation in China. Plateau Meteorology, 23, 417–428, https://doi.org/10.3321/j.issn:1000-0534.2004.04.001. (in Chinese)Google Scholar
  35. Qin, D. H., S. Y. Liu, and P. J. Li, 2006: Snow cover distribution, variability, and response to climate change in western China. J. Climate, 19, 1820–1833, https://doi.org/10.1175/jcli3694.1. CrossRefGoogle Scholar
  36. Rae, J. G. L., H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters, 2015: Development of the global sea ice 6.0 CICE configuration for the Met Office Global Coupled model. Geoscientific Model Development, 8, 2221–2230, https://doi.org/10.5194/gmd-8-2221-2015. CrossRefGoogle Scholar
  37. Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 2514–2519, https://doi.org/10.1002/2014GL059637. CrossRefGoogle Scholar
  38. Scaife, A. A., and Coauthors, 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 1–11, https://doi.org/10.1002/qj.2910. CrossRefGoogle Scholar
  39. Smith, D. M., and Coauthors, 2016: Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nature Climate Change, 6, 936–941, https://doi.org/10.1038/nclimate3058. CrossRefGoogle Scholar
  40. Svensson, C., and Coauthors, 2015: Long-range forecasts of UK winter hydrology. Environmental Research Letters, 10, 064006, https://doi.org/10.1088/1748-9326/10/6/064006. CrossRefGoogle Scholar
  41. Wang, B., 2008: Thrusts and prospects on understanding and predicting Asian monsoon climate. Acta Meteorologica Sinica, 22, 383–403.Google Scholar
  42. Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980-2004). Climate Dyn., 33, 93–117, https://doi.org/10.1007/s00382-008-0460-0. CrossRefGoogle Scholar
  43. Wei, K., and W. Chen, 2009: Climatology and trends of high temperature extremes across China in summer. Atmospheric and Oceanic Science Letters, 2, 153–158, https://doi.org/10.1080/16742834.2009.11446795. CrossRefGoogle Scholar
  44. Williams, K. D., and Coauthors, 2015: The met office global coupled model 2.0 (GC2) configuration. Geoscientific Model Development, 8, 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015. CrossRefGoogle Scholar
  45. Wu, G. X., and Y. M. Liu, 2003: Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys. Res. Lett., 30, 1201, https://doi.org/10.1029/2002GL016209. Google Scholar
  46. Wu, R., J. L. Kinter III, and B. P. Kirtman, 2005: Discrepancy of interdecadal changes in the Asian region among the NCEP–NCAR reanalysis, objective analyses, and observations. J. Climate, 18, 3048–3067, https://doi.org/10.1175/jcli3465.1. CrossRefGoogle Scholar
  47. Yan, L., P. X. Wang, Y. Q. Yu, L. J. Li, and B. Wang, 2010: Potential predictability of sea surface temperature in a coupled ocean-atmosphere GCM. Adv. Atmos. Sci., 27, 921–936, https://doi.org/10.1007/s00376-009-9062-y. CrossRefGoogle Scholar
  48. Zhou, L.-T., and R.-H. Huang, 2010: Interdecadal variability of summer rainfall in Northwest China and its possible causes. International Journal of Climatology, 30, 549–557, https://doi.org/10.1002/joc.1923. Google Scholar
  49. Zhou, L. T., and R. H. Huang, 2003: Research on the characteristics of interdecadal variability of summer climate in China and its possible cause. Climatic and Environmental Research, 8, 274–190, https://doi.org/10.3969/j.issn.1006-9585.2003.03.003. (in Chinese)Google Scholar

Copyright information

© British Crown (administered by Met Office); Chaofan LI and Riyu LU 2018

Authors and Affiliations

  • Chaofan Li
    • 1
  • Riyu Lu
    • 2
    • 3
  • Philip E. Bett
    • 4
  • Adam A. Scaife
    • 4
    • 5
  • Nicola Martin
    • 4
  1. 1.Center for Monsoon System Research, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.University of the Chinese Academy of SciencesBeijingChina
  4. 4.Met Office Hadley CentreExeterUK
  5. 5.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeter, DevonUK

Personalised recommendations