Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 8, pp 1035–1048 | Cite as

Indian Ocean SST modes and Their Impacts as Simulated in BCC_CSM1.1(m) and HadGEM3

  • Bo Lu
  • Hong-Li Ren
  • Rosie Eade
  • Martin Andrews
Original Paper
  • 47 Downloads

Abstract

The sea surface temperature anomalies (SSTAs) in the tropical Indian Ocean (TIO) show two dominant modes at interannual time scales, referred to as the Indian Ocean basin mode (IOBM) and dipole mode (IOD). Recent studies have shown that the IOBM and IOD not only affect the local climate, but also induce remarkable influences in East Asia via teleconnections. In this study, we assess simulations of the IOBM and IOD, as well as their teleconnections, using the operational seasonal prediction models from the Met Office (HadGEM3) and Beijing Climate Center [BCC CSM1.1(m)]. It is demonstrated that the spatial patterns and seasonal cycles are generally reproduced by the control simulations of BCC CSM1.1(m) and HadGEM3, although spectra biases exist. The relationship between the TIO SSTA and El Niño is successfully simulated by both models, including the persistent IOBM warming following El Niño and the IOD–El Niño interactions. BCC CSM1.1(m) and HadGEM3 are capable of simulating the observed local impact of the IOBM, such as the strengthening of the South Asian high. The influences of the IOBM on Yangtze River rainfall are also captured well by both models, although this teleconnection is slightly weaker in BCC CSM1.1(m) due to the underestimation of the northwestern Pacific subtropical high. The local effect of the IOD on East African rainfall is reproduced by both models. However, the remote control of the IOD on rainfall over southwestern China is not clear in either model. It is shown that the realistic simulations of TIO SST modes and their teleconnections give rise to the source of skillful seasonal predictions over China.

Key words

Indian Ocean SST teleconnection simulation seasonal prediction 

摘要

年际尺度上印度洋海温变化主要呈现出两个主要模态: 洋盆一致模态(IOBM)以及偶极子模态(IOD). 最近的研究发现, IOBM和IOD模态不仅能带来印度洋局地的气候异常, 还能通过遥相关影响东亚气候. 本研究针对中国气象局和英国气象局的气候预测业务模式(分别为BCC_CSM1.1(m)和HadGEM3), 评估其对印度洋海温主模态及其遥相关特征的模拟能力. 评估结果显示, 两家模式能够把握住印度洋海温主要模态的基本特征(例如空间分布型、季节循环等), 然而一些模拟偏差(例如频谱等)依然存在. 观测中印度洋海温与El Niño的关系(例如El Niño衰弱期印度洋海温的增暖, 以及IOD-El Niño相互作用等)在两家模式中都有一定的体现. BCC_CSM1.1(m) 和HadGEM3都能模拟出IOBM的局地效应(例如南亚高压的增强), 同时长江流域夏季降水对IOBM的遥相关响应也在两家模式里有所反映, 受限于西北太平洋反气旋响应的偏弱, BCC_CSM1.1(m)中长江流域夏季降水的响应也略偏小. BCC_CSM1.1(m) 和HadGEM3能很好地重现IOD对环印度洋地区的气候影响, 然而观测中我国西南降水对IOD的响应在两家模式中均未有体现. 同时, 我们的研究也表明了印度洋海温及其遥相关影响的模拟水平对我国季节气候预测至关重要.

关键词

印度洋海温 遥相关 模拟 季节预测 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is jointly supported by the National Key Research and Development Program of China (Grant No. 2016YFA0602104), the China Meteorological Special Program (Grant No. GYHY201506013), and the National Science Foundation (Grant No. 41605116). This work and its contributors (Bo LU, Hong-Li REN, Rosie EADE, and Martin ANDREWS) were supported by the UK–China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund.

References

  1. Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15, 2205–2231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.CrossRefGoogle Scholar
  2. Allan, R., and Coauthors, 2001: Is there an Indian Ocean dipole, and is it independent of the El Niño-Southern Oscillation? CLIVAR Exchanges, 6, 18–22.Google Scholar
  3. Annamalai, H., S.-P. Xie, J.-P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on de veloping El Niño. J. Climate, 18, 302–319, https://doi.org/10.1175/JCLI-3268.1. CrossRefGoogle Scholar
  4. Ashok, K., Z. Y. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett., 30(15), 1821, https://doi.org/10.1029/2003GL017926. CrossRefGoogle Scholar
  5. Baquero-Bernal, A., M. Latif, and S. Legutke, 2002: On dipolelike variability of sea surface temperature in the tropical Indian Ocean. J. Climate, 15(11), 1358–1368, https://doi.org/10.1175/1520-0442(2002)015<1358:ODVOSS>2.0.CO;2.CrossRefGoogle Scholar
  6. Behera, S. K., R. Krishnan, and T. Yamagata, 1999: Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett., 26, 3001–3004, https://doi.org/10.1029/1999GL010434. CrossRefGoogle Scholar
  7. Birkett, C., R. Murtugudde, and R. Allan, 1999: Indian Ocean climate event brings floods to East Africa’s lakes and the Sudd Marsh. Geophys. Res. Lett., 26, 1031–1034, https://doi.org/10.1029/1999GL900165. CrossRefGoogle Scholar
  8. Black, E, J. Slingo, and K. R. Sperber, 2003: An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Wea. Rev., 131, 74–94, https://doi.org/10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2.CrossRefGoogle Scholar
  9. Chan, S. C., S. K. Behera, and T. Yamagata, 2008: Indian Ocean Dipole influence on South American rainfall. Geophys. Res. Lett., 35, L14S12, https://doi.org/10.1029/2008GL034204. CrossRefGoogle Scholar
  10. Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 2616–2631, https://doi.org/10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2.CrossRefGoogle Scholar
  11. Dommenget, D., and M. Jansen, 2009: Predictions of Indian Ocean SST indices with a simple statistical model: A null hypothesis. J. Climate, 22(18), 4930–4938, https://doi.org/10.1175/2009JCLI2846.1. CrossRefGoogle Scholar
  12. Dommenget, D., and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J. Climate 15(2), 216–225, https://doi.org/10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2.CrossRefGoogle Scholar
  13. Dommenget, D., 2011: An objective analysis of the observed spatial structure of the Tropical Indian Ocean SST variability. Climate Dyn., 36, 2129–2145, https://doi.org/10.1007/s00382-010-0787-1. CrossRefGoogle Scholar
  14. Du, Y., and S.-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, https://doi.org/10.1029/2008GL033631. CrossRefGoogle Scholar
  15. Du, Y., S.-P. Xie, G. Huang, and K. M. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced North Indian Ocean warming. J. Climate, 22, 2023–2038, https://doi.org/10.1175/2008JCLI2590.1. CrossRefGoogle Scholar
  16. Du, Y., L. Yang, and S.-P. Xie, 2011: Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315–322, https://doi.org/10.1175/2010JCLI3890.1. CrossRefGoogle Scholar
  17. Du, Y., S.-P. Xie, Y. L. Yang, X. T. Zheng, L. Liu, and G. Huang, 2013: Indian Ocean variability in the CMIP5 multimodel ensemble: The Basin mode. J. Climate, 26, 7240–7266, https://doi.org/10.1175/JCLI-D-12-00678.1. CrossRefGoogle Scholar
  18. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, https://doi.org/10.1002/qj.49710644905. CrossRefGoogle Scholar
  19. Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711. CrossRefGoogle Scholar
  20. Huang, G., X. Qu, and K. M. Hu, 2011: The impact of the tropical Indian Ocean on South Asian high in boreal summer. Adv. Atmos. Sci., 28, 421–432, https://doi.org/10.1007/s00376-010-9224-y. CrossRefGoogle Scholar
  21. Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243–256, https://doi.org/10.2151/jmsj1965.70.1B 243. CrossRefGoogle Scholar
  22. Johnson, S. J., A. Turner, S. Woolnough, G. Martin, and C. MacLachlan, 2017: An assessment of Indian monsoon seasonal forecasts and mechanisms underlying monsoon interannual variability in the Met Office GloSea5-GC2 system. Climate Dyn., 48(5), 1447–1465, https://doi.org/10.1007/s00382-016-3151-2. CrossRefGoogle Scholar
  23. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  24. Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote Sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.CrossRefGoogle Scholar
  25. Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19, 1784–1801, https://doi.org/10.1175/JCLI3660.1. CrossRefGoogle Scholar
  26. Latif, M., D. Dommenget, M. Dima, and A. Grötzner, 1999: The role of Indian Ocean sea surface temperature in forcing East African rainfall anomalies during December–January 1997/98. J. Climate, 12(12), 3497–3504, https://doi.org/10.1175/1520-0442(1999)012<3497:TROIOS>2.0.CO;2.CrossRefGoogle Scholar
  27. Li, C. F., and Coauthors, 2016: Skillful seasonal prediction of Yangtze river valley summer rainfall. Environmental Research Letters, 11, 094002, https://doi.org/10.1088/1748-9326/11/9/094002. CrossRefGoogle Scholar
  28. Li, G., S.-P. Xie, and Y. Du, 2015: Monsoon-induced biases of climate models over the tropical Indian Ocean. J. Climate, 28, 3058–3072, https://doi.org/10.1175/JCLI-D-14-00740.1. CrossRefGoogle Scholar
  29. Li, T., B. Wang, C. P. Chang, and Y. S. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60, 2119–2135, https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.CrossRefGoogle Scholar
  30. Liu, L., W. D. Yu, and T. Li, 2011: Dynamic and thermodynamic air–sea coupling associated with the Indian Ocean dipole diagnosed from 23 WCRP CMIP3 models. J. Climate, 24, 4941–4958, https://doi.org/10.1175/2011JCLI4041.1. CrossRefGoogle Scholar
  31. Liu, Z. Y., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, https://doi.org/10.1029/2005RG000172. CrossRefGoogle Scholar
  32. Lu, B., and H.-L. Ren, 2016a: Improving ENSO periodicity simulation by adjusting cumulus entrainment in BCC CSMs. Dyn. Atmos. Oceans, 76, 127–140, https://doi.org/10.1016/j.dynatmoce.2016.10.005. CrossRefGoogle Scholar
  33. Lu, B., and H.-L. Ren, 2016b: SST-forced interdecadal deepening of the winter India–Burma trough since the 1950s. J. Geophys. Res., 121(6), 2719–2731, https://doi.org/10.1002/2015JD024393. CrossRefGoogle Scholar
  34. Lu, B., and Coauthors, 2017: An extreme negative Indian Ocean Dipole event in 2016: Dynamics and predictability. Climate Dyn., https://doi.org/10.1007/s00382-017-3908-2. (in Press)Google Scholar
  35. MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141(689), 1072–1084, https://doi.org/10.1002/qj.2396. CrossRefGoogle Scholar
  36. Qiu, Y., W. J. Cai, X. G. Guo, and B. Ng, 2014: The asymmetric influence of the positive and negative IOD events on China’s rainfall. Scientific Reports, 4, 4943, https://doi.org/10.1038/srep04943. CrossRefGoogle Scholar
  37. Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446–469, https://doi.org/10.1175/JCLI3637.1. CrossRefGoogle Scholar
  38. Ren, H. L., and Coauthors, 2017: Prediction of primary climate variability modes at the Beijing Climate Center. J. Meteor. Res., 31, 204–223, https://doi.org/10.1007/s13351-017-6097-3. CrossRefGoogle Scholar
  39. Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Res., 25, 151–169, https://doi.org/10.3354/cr025151. CrossRefGoogle Scholar
  40. Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363, https://doi.org/10.1038/43854. Google Scholar
  41. Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245. CrossRefGoogle Scholar
  42. Stevenson, S., B. Fox-Kemper, M. Jochum, B. Rajagopalan, and S. G. Yeager, 2010: ENSO model validation using wavelet probability analysis. J. Climate, 23(20), 5540–5547, https://doi.org/10.1175/2010JCLI3609.1. CrossRefGoogle Scholar
  43. Ummenhofer, C. C., A. S. Gupta, M. H. England, and C. J. C. Reason, 2009: Contributions of Indian Ocean sea surface temperatures to enhanced East African rainfall. J. Climate, 22, 993–1013, https://doi.org/10.1175/2008JCLI2493.1. CrossRefGoogle Scholar
  44. Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14241–14259, https://doi.org/10.1029/97JC02905. CrossRefGoogle Scholar
  45. Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356–360, https://doi.org/10.1038/43848. CrossRefGoogle Scholar
  46. Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, https://doi.org/10.1029/2009GL038710. CrossRefGoogle Scholar
  47. Wu, T. W., and Coauthors, 2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123–147, https://doi.org/10.1007/s00382-008-0487-2. CrossRefGoogle Scholar
  48. Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indowestern Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, https://doi.org/10.1175/2008JCLI2544.1. CrossRefGoogle Scholar
  49. Xie, S.-P., Y. Kosaka, Y. Du, K. M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33(4), 411–432, https://doi.org/10.1007/s00376-015-5192-6. CrossRefGoogle Scholar
  50. Yamagata, T., S. K. Behera, S. A. Rao, and H. N. Sall, 2003: Comments on “Dipoles, temperature gradients, and tropical climate anomalies”. Bull. Amer. Meteor. Soc., 84, 1418–1422, https://doi.org/10.1175/BAMS-84-10-1418. CrossRefGoogle Scholar
  51. Yang, J. L., and Q. Y. Liu, 2008: The “charge/discharge” roles of the basin-wide mode of the Indian Ocean SST anomaly— —influence on the South Asian High in summer. Acta Oceanologica Sinica, 30, 12–19, https://doi.org/10.3321/j.issn:0253-4193.2008.02.002. (in Chinese with English abstract)Google Scholar
  52. Yang, J. L., Q. Y. Liu, S. P. Xie, Z. Y. Liu, and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571. Google Scholar
  53. Yang, Y., S.-P. Xie, L. X. Wu, Y. Kosaka, N. C. Lau, and G. A. Vecchi, 2015: Seasonality and predictability of the Indian Ocean Dipole mode: ENSO forcing and internal variability. J. Climate, 28(20), 8021–8036, https://doi.org/10.1175/JCLID-15-0078.1. CrossRefGoogle Scholar
  54. Yu, J.-Y., C. R. Mechoso, J. C. McWilliams, and A. Arakawa, 2002: Impacts of the Indian Ocean on the ENSO cycle. Geophys. Res. Lett., 29(8), 46–1–46–4, https://doi.org/10.1029/2001GL014098. CrossRefGoogle Scholar
  55. Yuan, Y., H. Yang, W. Zhou, and C. Y. Li, 2008: Influences of the Indian Ocean Dipole on the Asian summer monsoon in the following year. Int. J. Climatol., 28, 1849–1859, https://doi.org/10.1002/joc.1678. CrossRefGoogle Scholar
  56. Zhang, Q., G. X. Wu, and Y. F. Qian, 2002: The bimodality of the 100 hPa South Asia high and its relationship to the climate anomaly over East Asia in summer. J. Meteor. Soc. Japan, 80, 733–744, https://doi.org/10.2151/jmsj.80.733. CrossRefGoogle Scholar
  57. Zhang, Q. Y., and S. Y. Tao, 1998: Influence of Asian midhigh latitude circulation on East Asian summer rainfall. Acta Meteorologica Sinica, 56, 199–211, https://doi.org/10.11676/qxxb1998.019. (in Chinese with English abstract)Google Scholar
  58. Zhao, J. H., L. Yang, Y. X. Zeng, and G. L. Feng, 2016: Analysis of atmospheric circulation and prediction signals for summer rainfall patterns in southern China. Chinese Journal of Atmospheric Sciences, 40(6), 1182–1198, https://doi.org/10.3878/j.issn.1006-9895.1601.15249. (in Chinese with English abstract)Google Scholar

Copyright information

© British Crown (administered by Met Office); Bo LU, and Hong-Li REN 2018

Authors and Affiliations

  • Bo Lu
    • 1
    • 2
    • 3
  • Hong-Li Ren
    • 1
    • 2
    • 4
  • Rosie Eade
    • 5
  • Martin Andrews
    • 5
  1. 1.Laboratory for Climate Studies, National Climate CenterChina Meteorological AdministrationBeijingChina
  2. 2.CMA-NJU Joint Laboratory for Climate Prediction Studies, Institute for Climate and Global Change Research, School of Atmospheric SciencesNanjing UniversityNanjingChina
  3. 3.Xin Jiang Climate CenterÜrümqiChina
  4. 4.Department of Atmospheric Science, School of Environmental StudiesChina University of GeoscienceWuhanChina
  5. 5.Met Office Hadley CenterExeterUK

Personalised recommendations