Advances in Atmospheric Sciences

, Volume 35, Issue 8, pp 965–980 | Cite as

Comparison of a Manual and an Automated Tracking Method for Tibetan Plateau Vortices

  • Julia Curio
  • Yongren Chen
  • Reinhard Schiemann
  • Andrew G. Turner
  • Kai Chi Wong
  • Kevin Hodges
  • Yueqing Li
Open Access
Original Paper

Abstract

Tibetan Plateau vortices (TPVs) are mesoscale cyclones originating over the Tibetan Plateau (TP) during the extended summer season (April–September). Most TPVs stay on the TP, but a small number can move off the TP to the east. TPVs are known to be one of the main precipitation-bearing systems on the TP and moving-off TPVs have been associated with heavy precipitation and flooding downstream of the TP (e.g., in Sichuan province or over the Yangtze River Valley). Identifying and tracking TPVs is difficult because of their comparatively small horizontal extent (400–800 km) and the limited availability of soundings over the TP, which in turn constitutes a challenge for short-term predictions of TPV-related impacts and for the climatological study of TPVs.

In this study k](i) manual tracking (MT) results using radiosonde data from a network over and downstream of the TP are compared with (ii) results obtained by an automated tracking (AT) algorithm applied to ERA-Interim data. Ten MT-TPV cases are selected based on method (i) and matched to and compared with the corresponding AT-TPVs identified with method (ii). Conversely k]ten AT-TPVs are selected and compared with the corresponding MT-TPVs. In general k]the comparison shows good results in cases where the underlying data are in good agreement k]but considerable differences are also seen in some cases and explained in terms of differences in the tracking methods k]data availability/coverage and disagreement between sounding and ERA-Interim data. Recommendations are given for future efforts in TPV detection and tracking k]including in an operational weather forecasting context.

Key words

Tibetan Plateau Vortices Yearbook of TPVs TRACK mesoscale cyclones manual tracking automated tracking 

摘要

高原低涡是夏半年(4-9月)生成于青藏高原上空的中尺度气旋系统. 其中, 大部分高原低涡滞留在高原地区, 只有少部分能够东移出高原. 高原低涡是青藏高原地区的主要降水系统之一, 并且, 移出的高原低涡与青藏高原下游的强降水和洪涝密切相关(如四川省、长江流域等). 因为相对小的水平尺度(400-800公里)和青藏高原有限的探空站点, 识别和跟踪高原低涡是困难的, 这也制约了对高原低涡影响的短期预报和其气候学研究.

为此, 针对高原低涡的识别和跟踪, 本研究基于青藏高原及其下游探空站网数据的人工追踪结果与基于ERA-Interim数据的自动跟踪算法结果进行了比较分析. 应用人工方法选择10个高原低涡个例, 并与自动方法识别的相应结果匹配对比. 相反, 应用自动方法选择10个高原低涡个列, 并与人工方法的结果匹配对比. 结果表明:一般情况下, 只要基础数据吻合一致, 则对比具有好的结果. 但在一些个例中, 也会观察到较大的差别, 并根据不同追踪方法的差异性, 探空与ERA-Interim资料的可用性/覆盖率和不一致性进行了解释, 也由此针对高原低涡的探测和跟踪, 包括其业务天气预报提出了未来努力的建议.

关键词

高原低涡 高原低涡年鉴 跟踪 中尺度气旋 人工跟踪 自动跟踪 

Notes

Acknowledgements

This work and all its contributors were supported by the UK–China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund grant agreement P100195 between the Met Office and the National Centre for Atmospheric Science at the University of Reading for the MESETA (Modelling Physical and Dynamical Processes over the Tibetan Plateau and their Regional Effects over East Asia) project. We thank the two anonymous reviewers for their constructive comments, which helped to improve the manuscript.

References

  1. Bao, X. H., and F. Q. Zhang, 2013: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Climate, 26(1), 206–214, https://doi.org/10.1175/JCLI-D-12-00056.1. CrossRefGoogle Scholar
  2. Bei, N. F., S. X. Zhao, and S. T. Gao, 2002: Numerical simulation of a heavy rainfall event in China during July 1998. Meteor. Atmos. Phys., 80, 153–164, https://doi.org/10.1007/s007030200022. CrossRefGoogle Scholar
  3. Bengtsson, L., K. I. Hodges, and M. Esch, 2007: Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re-analyses. Tellus A, 59(4), 396–416, https://doi.org/10.1111/j.1600-0870.2007.00236.x. CrossRefGoogle Scholar
  4. Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2010: Can climate models capture the structure of extratropical cyclones? J. Climate, 23(7), 1621–1635, https://doi.org/10.1175/2009JCLI3318.1. CrossRefGoogle Scholar
  5. Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2011: Northern hemisphere extratropical cyclones in a warming climate in the HiGEM High-Resolution climate model. J. Climate, 24(20), 5336–5352, https://doi.org/10.1175/2011JCLI4181.1. CrossRefGoogle Scholar
  6. Chen, G. X., T. Iwasaki, H. L. Qin, and W. M. Sha, 2014: Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA. J. Climate, 27(14), 5517–5537, https://doi.org/10.1175/JCLI-D-14-00005.1. CrossRefGoogle Scholar
  7. Chen, L. S., and Z. X. Luo, 2003: A preliminary study of the dynamics of eastwardshifting cyclonic vortices. Adv. Atmos. Sci., 20, 323–332, https://doi.org/10.1007/BF02690790. CrossRefGoogle Scholar
  8. Chen, Y. R., Y. Q. Li, and T. L. Zhao, 2015: Cause analysis on eastward movement of southwest China vortex and its induced heavy rainfall in South China. Advances in Meteorology, 2015, Article ID 481735, https://doi.org/10.1155/2015/481735.
  9. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828. CrossRefGoogle Scholar
  10. Dimri, A. P., D. Niyogi, A. P. Barros, J. Ridley, U. C. Mohanty, T. Yasunari, and D. R. Sikka, 2015: Western disturbances: A review. Rev. Geophys., 53(2), 225–246, https://doi.org/10.1002/2014RG000460. CrossRefGoogle Scholar
  11. Feng, X. Y., C. H. Liu, R. Rasmussen, and G. Z. Fan, 2014: A 10-yr climatology of Tibetan Plateau vortices with NCEP climate forecast system reanalysis. Journal of Applied Meteorology and Climatology, 53, 34–46, https://doi.org/10.1175/JAMCD-13-014.1. CrossRefGoogle Scholar
  12. Hodges, K., A. Cobb, and P. L. Vidale, 2017: How well are tropical cyclones represented in reanalysis datasets? J. Climate, 30(14), 5243–5264, https://doi.org/10.1175/JCLI-D-16-0557.1. CrossRefGoogle Scholar
  13. Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 2573–2586, https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.CrossRefGoogle Scholar
  14. Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123(12), 3458–3465, https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2CrossRefGoogle Scholar
  15. Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127(6), 1362–1373, https://doi.org/10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2CrossRefGoogle Scholar
  16. Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 4888–4906, https://doi.org/10.1175/2011JCLI4097.1. CrossRefGoogle Scholar
  17. Hodges, K. I., B. J. Hoskins, J. Boyle, and C. Thorncroft, 2003: A comparison of recent reanalysis datasets using objective feature tracking: Storm tracks and tropical easterly waves. Mon. Wea. Rev., 131, 2012–2037, https://doi.org/10.1175/1520-0493(2003)131<2012:ACORRD>2.0.CO;2.CrossRefGoogle Scholar
  18. Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern hemisphere winter storm tracks. J. Atmos. Sci., 59(6), 1041–1061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.CrossRefGoogle Scholar
  19. Huang, D.-Q., J. Zhu, Y.-C. Zhang, Y. Huang, and X.-Y. Kuang, 2016: Assessment of summer monsoon precipitation derived from five reanalysis datasets over East Asia. Quart. J. Roy. Meteor. Soc., 142(694), 108–119, https://doi.org/10.1002/qj.2634. CrossRefGoogle Scholar
  20. Institute of Plateau Meteorology (IPM), and CMA, 2009}: Year Book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–167. (in ChineseGoogle Scholar
  21. Institute of Plateau Meteorology (IPM), and CMA, 2010}: Year Book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–113. (in ChineseGoogle Scholar
  22. Institute of Plateau Meteorology (IPM), and CMA, 2011}: Year Book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–149. (in ChineseGoogle Scholar
  23. Institute of Plateau Meteorology (IPM), and CMA, 2012}: Year Book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–158. (in ChineseGoogle Scholar
  24. Institute of Plateau Meteorology (IPM), and CMA, 2013}: Year Book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–182. (in ChineseGoogle Scholar
  25. Institute of Plateau Meteorology (IPM), and CMA, 2014}: Year Book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–127. (in ChineseGoogle Scholar
  26. Kuo, Y.-H., L. S. Cheng, and J. W. Bao, 1988: Numerical simulation of the 1981 Sichuan flood. Part I: Evolution of a mesoscale southwest Vortex. Mon. Wea. Rev., 116, 2481–2504, https://doi.org/10.1175/1520-0493(1988)116<2481:NSOTSF>2.0.CO;2.Google Scholar
  27. Li, G. P., and F. H. Zhao, 2017: Analysis of the mechanism underlying Tibetan Plateau vortex frequency difference between strong and weak MJO periods. J. Meteor. Res., 31(3), 530–539, https://doi.org/10.1007/s13351-017-6041-6. CrossRefGoogle Scholar
  28. Li, L., R. H. Zhang, and M. Wen, 2014a: Diurnal variation in the occurrence frequency of the Tibetan Plateau vortices. Meteor. Atmos. Phys., 125, 135–144, https://doi.org/10.1007/s00703-014-0325-5. CrossRefGoogle Scholar
  29. Li, L., R. H. Zhang, M. Wen, and L. K. Liu, 2014b: Effect of the atmospheric heat source on the development and eastward movement of the Tibetan Plateau vortices. Tellus A, 66(1), 24451, https://doi.org/10.3402/tellusa.v66.24451. CrossRefGoogle Scholar
  30. Li L., R. H. Zhang, and M. Wen, 2011: Diagnostic analysis of the evolution mechanism for a vortex over the Tibetan Plateau in June 2008. Adv. Atmos. Sci., 28, 797–808, https://doi.org/10.1007/s00376-010-0027-y. CrossRefGoogle Scholar
  31. Li, L., R. H. Zhang, and M. Wen, 2017: Genesis of southwest vortices and its relation to Tibetan Plateau vortices. Quart. J. Roy. Meteor. Soc., 143(707), 2556–2566, https://doi.org/10.1002/qj.3106. CrossRefGoogle Scholar
  32. Li, Y. Q., and Coauthors, 2000: Year Book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–81. (in Chinese)Google Scholar
  33. Li, Y. Q., and Coauthors, 2001: Year Book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–91. (in Chinese)Google Scholar
  34. Li, Y. Q., and Coauthors, 2002: Year book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–100. (in Chinese)Google Scholar
  35. Li, Y. Q., and Coauthors, 2003: Year Book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–100. (in Chinese)Google Scholar
  36. Li, Y. Q., and Coauthors, 2004: Year Book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–116. (in Chinese)Google Scholar
  37. Li, Y. Q., and Coauthors, 2005: Year Book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–145. (in Chinese)Google Scholar
  38. Li, Y. Q., and Coauthors, 2006: Year Book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–128. (in Chinese)Google Scholar
  39. Li, Y. Q., and Coauthors, 2007: Year Book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–145. (in Chinese)Google Scholar
  40. Li, Y. Q., and Coauthors, 2008: Year Book of Tibetan Plateau Vortex and Shear Line. Science Press, Beijing, 1–140. (in Chinese)Google Scholar
  41. Lin, R. P., T. J. Zhou, and Y. Qian, 2014: Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J. Climate, 27(3), 1271–1289, https://doi.org/10.1175/JCLID-13-00215.1. CrossRefGoogle Scholar
  42. Lin, Z. Q., 2015: Analysis of Tibetan Plateau vortex activities using ERA-Interim data for the period 1979-2013. J. Meteor. Res., 29(5), 720–734, https://doi.org/10.1007/s13351-015-4273-x. CrossRefGoogle Scholar
  43. Noer, G., Ø. Saetra, T. Lien, and Y. Gusdal, 2011: A climatological study of polar lows in the Nordic Seas. Quart. J. Roy. Meteor. Soc., 137, 1762–1772, https://doi.org/10.1002/qj.846. CrossRefGoogle Scholar
  44. Sardeshmukh, P. D., and B. I. Hoskins, 1984: Spatial smoothing on the sphere. Mon. Wea. Rev., 112(12), 2524–2529, https://doi.org/10.1175/1520-0493(1984)112<2524:SSOTS>2.0.CO;2.CrossRefGoogle Scholar
  45. Tao, S.-Y., and Y.-H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 23–30, https://doi.org/10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.CrossRefGoogle Scholar
  46. Tous, M., and R. Romero, 2013: Meteorological environments associated with medicane development. International Journal of Climatology, 33, 1–14, https://doi.org/10.1002/joc.3428. CrossRefGoogle Scholar
  47. Tous, M., G. Zappa, R. Romero, L. Shaffrey, and P. L. Vidale, 2016: Projected changes in medicanes in the HadGEM3 N512 high-resolution global climate model. Climate Dyn., 47(5–6), 1913–1924, https://doi.org/10.1007/s00382-015-2941-2. CrossRefGoogle Scholar
  48. Wang, B., 1987: The development mechanism for Tibetan Plateau warm vortices. J. Atmos. Sci., 44, 2978–2994, https://doi.org/10.1175/1520-0469(1987)044<2978:TDMFTP>2.0.CO;2.CrossRefGoogle Scholar
  49. Wang, B., and I. Orlanski, 1987: Study of a heavy rain vortex formed over the eastern flank of the Tibetan Plateau. Mon. Wea. Rev., 115(7), 1370–1393, https://doi.org/10.1175/1520-0493(1987)115<1370:SOAHRV>2.0.CO;2.CrossRefGoogle Scholar
  50. Wu, G.-X., and S.-J. Chen, 1985: The effect of mechanical forcing on the formation of a mesoscale vortex. Quart. J. Roy. Meteor. Soc., 111, 1049–1070, https://doi.org/10.1002/qj.49711147009. CrossRefGoogle Scholar
  51. Xiang, S. Y., Y. Q. Li, D. Li, and S. Yang, 2013: An analysis of heavy precipitation caused by a retracing plateau vortex based on TRMM data. Meteor. Atmos. Phys., 122, 33–45, https://doi.org/10.1007/s00703-013-0269-1. CrossRefGoogle Scholar
  52. Yu, S. H., and W. L. Gao, 2009: Large-scale conditions of Tibet Plateau vortex departure. Sciences in Cold and Arid Regions, 1, 559–569.Google Scholar
  53. Yu, S. H., W. L. Gao, J. Peng, and Y. H. Xiao, 2014: Observational facts of sustained departure plateau vortexes. J. Meteor. Res., 28(2), 296–307, https://doi.org/10.1007/s13351-014-3023-9. CrossRefGoogle Scholar
  54. Yu, S. H., W. L. Gao, D. X. Xiao, and J. Peng, 2016: Observational facts regarding the joint activities of the southwest vortex and plateau vortex after its departure from the Tibetan Plateau. Adv. Atmos. Sci., 33(1), 34–46, https://doi.org/10.1007/s00376-015-5039-1. CrossRefGoogle Scholar
  55. Zappa, G., L. Shaffrey, and K. Hodges, 2014: Can polar lows be objectively identified and tracked in the ECMWF operational analysis and the ERA-interim reanalysis? Mon. Wea. Rev., 142(8), 2596–2608, https://doi.org/10.1175/mwr-d-14-00064.1. CrossRefGoogle Scholar
  56. Zappa, G., L. C. Shaffrey, K. I. Hodges, P. G. Sansom, and D. B. Stephenson, 2013: A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Climate, 26(16), 5846–5862, https://doi.org/10.1175/JCLI-D-12-00573.1. CrossRefGoogle Scholar
  57. Zhang, P. F., G. P. Li, X. H. Fu, and Y. M. Liu, 2014: Clustering of Tibetan Plateau vortices by 10-30-Day intraseasonal oscillation. Mon. Wea. Rev., 142, 290–300, https://doi.org/10.1175/MWR-D-13-00137.1. CrossRefGoogle Scholar
  58. Zhao, F.-H., G.-P. Li, C.-H. Huang, and X.-R. Liu, 2016: Modulation of Madden-Julian oscillation on Tibetan Plateau vortex. Journal of Tropical Meteorology, 22, 30–41, https://doi.org/10.16555/j.1006-8775.2016.01.004. Google Scholar

Copyright information

© The Authors 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • Julia Curio
    • 1
    • 2
  • Yongren Chen
    • 3
    • 4
  • Reinhard Schiemann
    • 1
    • 2
  • Andrew G. Turner
    • 1
    • 2
  • Kai Chi Wong
    • 1
    • 2
  • Kevin Hodges
    • 2
  • Yueqing Li
    • 3
    • 4
  1. 1.NCAS-ClimateUniversity of ReadingReadingUK
  2. 2.Department of MeteorologyUniversity of ReadingReadingUK
  3. 3.Institute of Plateau MeteorologyChina Meteorological AdministrationChengduChina
  4. 4.Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan ProvinceChengduChina

Personalised recommendations