Advances in Atmospheric Sciences

, Volume 35, Issue 8, pp 942–954 | Cite as

Assessment and Assimilation of FY-3 Humidity Sounders and Imager in the UK Met Office Global Model

  • Fabien Carminati
  • Brett Candy
  • William Bell
  • Nigel Atkinson
Original Paper

Abstract

China’s FengYun 3 (FY-3) polar orbiting satellites are set to become an important source of observational data for numerical weather prediction (NWP), atmospheric reanalyses, and climate monitoring studies over the next two decades. As part of the Climate Science for Service Partnership China (CSSP China) program, FY-3B Microwave Humidity Sounder 1 (MWHS-1) and FY-3C MWHS-2 observations have been thoroughly assessed and prepared for operational assimilation. This represents the first time observations from China’s polar orbiting satellites have been used in the UK’s global NWP model. Since 2016, continuous data quality monitoring has shown occasional bias changes found to be correlated to changes in the energy supply scheme regulating the platform heating system and other transient anomalies. Nonetheless, MWHS-1 and MWHS-2 significantly contribute to the 24-h forecast error reduction by 0.3% and 0.6%, respectively, and the combination of both instruments is shown to improve the fit to the model background of independent sounders by up to 1%. The observations from the Microwave Radiation Imager (MWRI) also are a potentially significant source of benefits for NWP models, but a solar-dependent bias observed in the instrument half-orbits has prevented their assimilation. This paper presents the bases of a correction scheme developed at the Met Office for the purpose of a future assimilation of MWRI data.

Key words

Microwave Humidity Sounder Microwave Radiation Imager numerical weather prediction 

摘要

中国风云3号极轨卫星在未来二十年将作为重要的观测资料源, 用于数值天气预报、大气再分析产品和气候监测研究. 本项研究作为“面向服务伙伴的气候科学”(CSSP中国)的内容之一, 对风云3B微波探测器1(MWHS-1)和3C微波探测器2(MWHS-2)的观测资料作了系统评估, 同时对其进行了业务数值预报模式的同化分析.

本项研究给出了首次用于英国全球数值天气预报模式的中国极轨卫星观测结果. 自2016起, 连续数据质量检验表明上述卫星资料的偶然偏差变化是与影响仪器平台加热系统和其它瞬时异常的能量供给方案有关. 尽管存在这些偏差, MWHS-1和MWHS-2依然可以分别显著地减少24小时预报偏差0.3%和0.6%, 而两个资料结合使用后可使24小时预报偏差减少1%. 微波成像仪观测(MWRI)也是对数值天气预报有重要帮助的资料源, 但该仪器半轨道检测到的与太阳辐射有关的偏差不利于该资料的数据同化应用. 本项研究还介绍了英国气象局开发用于未来MWRI资料同化的订正算法的基本原理.

关键词

微波湿度仪 微波辐射成像仪 数值天气预报 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work and its contributors (Fabien CARMINATI, Brett CANDY and William BELL) were supported by the UK–China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund.

References

  1. Auligné, T., A. P. McNally, and D. P. Dee, 2007: Adaptive bias correction for satellite data in a numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 133(624), 631–642, https://doi.org/10.1002/qj.56. CrossRefGoogle Scholar
  2. Bauer, P., 2009: Observing System Experiments (OSE) to estimate the impact of observations in NWP. Conference Paper, ECMWF. [Available online from https://www.ecmwf.int/sites/default/files/elibrary/2009/7978-observing-systemexperiments-ose-estimate-impact-observations-nwp.pdfGoogle Scholar
  3. Bell, W., and Coauthors, 2008: The assimilation of SSMIS radiances in numerical weather prediction models. IEEE Trans. Geosci. Remote Sens., 46(4), 884–900, https://doi.org/10.1109/TGRS.2008.917335. CrossRefGoogle Scholar
  4. Bennartz, R., A. Thoss, A. Dybbroe, and D. B. Michelson, 2002: Precipitation analysis using the Advanced Microwave Sounding Unit in support of nowcasting applications. Meteorological Applications, 9(2), 177–189, https://doi.org/10.1017/S1350482702002037. CrossRefGoogle Scholar
  5. Bodas-Salcedo, A., K. D. Williams, P. R. Field, and A. P. Lock, 2012: The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: The role of midlatitude cyclone clouds. J. Climate, 25(21), 7467–7486, https://doi.org/10.1175/JCLI-D-11-00702.1. CrossRefGoogle Scholar
  6. Bodas-Salcedo, A., P. G. Hill, K. Furtado, K. D. Williams, P. R. Field, J. C. Manners, P. Hyder, and S. Kato, 2016: Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Climate, 29(11), 4213–4228, https://doi.org/10.1175/JCLI-D-15-0564.1. CrossRefGoogle Scholar
  7. Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27(1), 41–56, https://doi.org/10.1175/JCLI-D-13-00169.1. CrossRefGoogle Scholar
  8. Booton, A., W. Bell, and N. Atkinson, 2013: An improved bias correction for SSMIS. Proceedings of the International TOVS Study Conference (ITSC), Vol. 19. [Available online from https://cimss.ssec.wisc.edu]/itwg/itsc/itsc19/program/papers/1003booton.pdf
  9. Bormann, N., A. Fouilloux, and W. Bell, 2013: Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res., 118(23), 12970–12980, https://doi.org/10.1002/2013JD020325. Google Scholar
  10. Carminati, F., K. Lean, and W. Bell, 2015: Assimilation of observations from the microwave humidity sounders on board China’s FY-3B and FY-3C meteorological satellites. Proceedings of the International TOVS Study Conference (ITSC), Vol. 20. https://cimss.ssec.wisc.edu/itwg/itsc/itsc20/papers/104carminati paper.pdf.
  11. Chen, K. Y., S. English, N. Bormann, and J. Zhu, 2015: Assessment of FY-3A and FY-3B MWHS observations. Wea. Forecasting, 30(5), 1280–1290, https://doi.org/10.1175/WAF-D-15-0025.1. CrossRefGoogle Scholar
  12. Christy, J. R., R.W. Spencer, and E. S. Lobl, 1998: Analysis of the merging procedure for the MSU daily temperature time series. J. Climate, 11(8), 2016–2041, https://doi.org/10.1175/1520-0442-11.8.2016. CrossRefGoogle Scholar
  13. Courtier, P., J.-N. Thépaut, A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1387, https://doi.org/10.1002/qj.49712051912. CrossRefGoogle Scholar
  14. Deblonde, G. and S. J. English, 2000: Evaluation of the FASTEM-2 fast microwave oceanic surface emissivity model. Tech. Proc. ITSC-XI, Budapest, 67–78.Google Scholar
  15. Doherty, A., N. Atkinson, W. Bell, B. Candy, S. Keogh, and C. Cooper, 2012: An initial assessment of data from the Advanced Technology Microwave Sounder. Forecasting Research Technical Report, no. 569. [Available from https://library.metoffice.gov.uk]Google Scholar
  16. Dong, C. H., and Coauthors, 2009: An overview of a new Chinese weather satellite FY-3A. Bull. Amer. Meteor. Soc., 90(10), 1531–1544, https://doi.org/10.1175/2009BAMS2798.1. CrossRefGoogle Scholar
  17. English, S. J., J. R. Eyre, and J. A. Smith, 1999: A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 125(559), 2359–2378, https://doi.org/10.1002/qj.49712555902. CrossRefGoogle Scholar
  18. Geer, A. J., P. Bauer, and N. Bormann, 2010: Solar biases in microwave imager observations assimilated at ECMWF. IEEE Trans. Geosci. Remote Sens., 48(6), 2660–2669, https://doi.org/10.1109/TGRS.2010.2040186. CrossRefGoogle Scholar
  19. Imaoka, K., M. Kachi, M. Kasahara, N. Ito, K. Nakagawa, and T. Oki, 2010: Instrument performance and calibration of AMSR-E and AMSR2. Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Kyoto, Japan, ISPRS, 13–18.Google Scholar
  20. Kleespies, T. J. and P. Watts, 2006: Comparison of simulated radiances, Jacobians and linear error analysis for the Microwave Humidity Sounder and the Advanced Microwave Sounding Unit-B. Quart. J. Roy. Meteor. Soc., 132(621C), 3001–3010, https://doi.org/10.1256/qj.05.03. CrossRefGoogle Scholar
  21. Lawrence, H., N. Bormann, Q. F. Lu, A. Geer, and S. English, 2015: An evaluation of FY-3C MWHS-2 at EMCWF. EUMETSAT/ECMWF Fellowship Programme Research Report No. 37. [Available online from https://www.ecmwf.int/sites/default/files/elibrary/2015/10668-evaluation-fy-3c-mwhs-2-ecmwf.pdf]Google Scholar
  22. Lawrence, H., and Coauthors, 2017: An evaluation of FY-3C MWRI and assessment of the long-term quality of FY-3C MWHS-2 at ECMWF and the Met Office. Tech. Memo. European Centre for Medium-RangeWeather Forecasts, England, 798 pp. [Available online from https://www.ecmwf.int206-evaluation-fy-3c-mwriand-assessment-long-term-quality-fy-3c-mwhs-2-ecmwf-andmet-office.pdf]Google Scholar
  23. Li, J., Z. K. Qin, and G. Q. Liu, 2016: A new generation of Chinese FY-3C microwave sounding measurements and the initial assessments of its observations. Int. J. Remote Sens., 37(17), 4035–4058, https://doi.org/10.1080/01431161.2016.1207260. CrossRefGoogle Scholar
  24. Li, Q., 2001: Development of Chinese geostationary meteorological satellite. Spacecraft Recovery & Remote Sensing, 22(1), 13–19, https://doi.org/10.3969/j.issn.1009-8518.2001.01.004. (in Chinese)Google Scholar
  25. Lorenc, A. C., and R. T. Marriott, 2014: Forecast sensitivity to observations in the Met Office Global numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 140(678), 209–224, https://doi.org/10.1002/qj.2122. CrossRefGoogle Scholar
  26. Lu, Q. F., and W. Bell, 2014: Characterizing channel center frequencies in AMSU-A and MSU microwave sounding instruments. J. Atmos. Oceanic Technol., 31(8), 1713–1732, https://doi.org/10.1175/JTECH-D-13-00136.1. CrossRefGoogle Scholar
  27. Lu, Q. F., W. Bell, P. Bauer, N. Bormann, and C. Peubey, 2011a: Characterizing the FY-3A microwave temperature sounder using the ECMWF model. J. Atmos. Oceanic Technol., 28(11), 1373–1389, https://doi.org/10.1175/JTECH-D-10-05008.1. CrossRefGoogle Scholar
  28. Lu, Q. F., W. Bell, P. Bauer, N. Bormann, and C. Peubey, 2011b: An evaluation of FY-3A satellite data for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137(658), 1298–1311, https://doi.org/10.1002/qj.834. CrossRefGoogle Scholar
  29. Lu, Q. F., H. Lawrence, N. Bormann, S. English, K. Lean, N. Atkinson, W. Bell, and F. Carminati, 2015: An evaluation of FY-3C satellite data quality at ECMWF and the Met Office. European Centre for Medium-RangeWeather Forecasts Tech. Memo., England, 767 pp.Google Scholar
  30. Meng Z. Z., 2004: The polar orbit meteorological satellite in China. Engineering Sciences, 3, 10–15.Google Scholar
  31. Muth, C., P. S. Lee, J. C. Shiue, and W. A. Webb, 2004: Advanced technology microwave sounder on NPOESS and NPP. Proc. 2004 IEEE Int. Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, IEEE, https://doi.org/10.1109/IGARSS.2004.1369789. Google Scholar
  32. Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G. W. Inverarity, A. C. Lorenc, and T. J. Payne, 2007: The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133: 347–362, https://doi.org/10.1002/qj.32. CrossRefGoogle Scholar
  33. Saunders, R. W., T. A. Blackmore, B. Candy, P. N. Francis, and T. J. Hewison, 2013b: Monitoring satellite radiance biases using NWP models. IEEE Trans. Geosci. Remote Sens., 51(3), 1124–1138, https://doi.org/10.1109/TGRS.2012.2229283. CrossRefGoogle Scholar
  34. Saunders, R., and Coauthors, 2013a: RTTOV-11 science and validation report. NWPSAF-MO-TV-032, V1.1.Google Scholar
  35. Tian, X. X., and X. L. Zou, 2016: An empirical model for television frequency interference correction of AMSR2 data over ocean near the U.S. and Europe. IEEE Trans. Geosci. Remote Sens., 54(7), 3856–3867, https://doi.org/10.1109/TGRS.2016.2529504. CrossRefGoogle Scholar
  36. Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131(612), 2961–3012, https://doi.org/10.1256/qj.04.176. CrossRefGoogle Scholar
  37. Yang, H., and Coauthors, 2011: The FengYun-3 microwave radiation imager on-orbit verification. IEEE Trans. Geosci. Remote Sens., 49(11), 4552–4560, https://doi.org/10.1109/TGRS.2011.2148200. CrossRefGoogle Scholar
  38. Yang, W. Z., V. O. John, X. P. Zhao, H. Lu, and K. R. Knapp, 2016: Satellite climate data records: Development, applications, and societal benefits. Remote Sensing, 8(4), 331, https://doi.org/10.3390/rs8040331. CrossRefGoogle Scholar
  39. Zou, X., X. Wang, F. Weng, and G. Li, 2011: Assessments of Chinese Fengyun Microwave Temperature Sounder (MWTS) measurements for weather and climate applications. J. Atmos. Oceanic Technol., 28(10), 1206–1227, https://doi.org/10.1175/JTECH-D-11-00023.1. CrossRefGoogle Scholar
  40. Zou, X. L., X. X. Tian, and F. Z. Weng, 2014: Detection of television frequency interference with satellite microwave imager observations over oceans. J. Atmos. Oceanic Technol., 31(12), 2759–2776, https://doi.org/10.1175/JTECH-D-14-00086.1. CrossRefGoogle Scholar
  41. Zou, X. L., J. Zhao, F. Z. Weng, and Z. K. Qin, 2012: Detection of radio-frequency interference signal over land from FY-3B Microwave Radiation Imager (MWRI). IEEE Trans. Geosci. Remote Sens., 50(12), 4994–5003, https://doi.org/10.1109/TGRS.2012.2191792. CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fabien Carminati
    • 1
  • Brett Candy
    • 1
  • William Bell
    • 1
  • Nigel Atkinson
    • 1
  1. 1.UK Met OfficeExeterUK

Personalised recommendations