Assessing Global Warming Induced Changes in Summer Rainfall Variability over Eastern China Using the Latest Hadley Centre Climate Model HadGEM3-GC2

Abstract

Summer precipitation anomalies over eastern China are characterized spatially by meridionally banded structures fluctuating on interannual and interdecadal timescales, leading to regional droughts and floods. In addition to long-term trends, how these patterns may change under global warming has important implications for agricultural planning and water resources over this densely populated area. Using the latest Hadley Centre climate model, HadGEM3-GC2, this paper investigates the potential response of summer precipitation patterns over this region, by comparing the leading modes between a 4×CO2 simulation and the model’s pre-industrial control simulation. Empirical Orthogonal Function (EOF) analyses show that the first two leading modes account for about 20% of summer rainfall variability. EOF1 is a monopole mode associated with the developing phase of ENSO events and EOF2 is a dipole mode associated with the decaying phase of ENSO. Under 4×CO2 forcing, the dipole mode with a south–north orientation becomes dominant because of a strengthened influence from excessive warming of the Indian Ocean. On interdecadal time scales, the first EOF looks very different from the control simulation, showing a dipole mode of east–west contrast with enhanced influence from high latitudes.

摘要

在年际和年代际尺度上, 中国东部的夏季降水异常通常表现为明显的经向型特征, 对区域性旱涝产生影响. 在气候变化影响下, 除了长期趋势外, 降水变率尤其是空间分布特征的变化对该地区的农业生产、水资源调度等具有重要意义. 通过对比分析英国气象局Hadley中心最新气候模式HadGEM3-GC2的骤增4倍CO2及工业革命前控制试验, 本文研究了增暖背景下该地区夏季降水模态的可能变化. 基于EOF分析的结果表明, 在该模式的控制实验中, 前两个降水模态占总降水变率的20%. EOF1是一个单极型, 与ENSO事件的发展位相相关;而EOF2为偶极型, 与ENSO事件的衰减位相相关. 骤增4倍CO2强迫下, 年际尺度上, 偶极型变为了主导模态, 这主要是由于印度洋的作用增强所致. 而年代际尺度上, 降水模态受到更多来自高纬度的影响, 增暖下主导模态与控制实验差距较大, 表现出更强的东-西向分布特征.

References

  1. Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224–232, https://doi.org/10.1038/nature01092.

    Google Scholar 

  2. Cai, W. J., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4(2), 111–116, https://doi.org/10.1038/nclimate2100.

    Article  Google Scholar 

  3. Chadwick, R., P. L. Wu, P. Good, and T. Andrews, 2012: Asymmetries in tropical rainfall and circulation patterns in idealised CO2 removal experiments. Climate Dyn., 40(1), 295–316, https://doi.org/10.1007/s00382-012-1287-2.

    Google Scholar 

  4. Chen, G. S., and R. H. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in Northwest China. J. Climate, 25(22), 7834–7851, https://doi.org/10.1175/JCLI-D-11-00684.1.

    Article  Google Scholar 

  5. Chen, T. C., and M. C. Yen, 1994: Interannual variation of the Indian monsoon simulated by the NCAR Community Climate Model: Effect of the tropical Pacific SST. J. Climate, 7(9), 1403–1415, https://doi.org/10.1175/1520-0442(1994)007<1403:IVOTIM>2.0.CO;2.

    Article  Google Scholar 

  6. Chen, X. L., and T. J. Zhou, 2014: Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific-Japan pattern interannual variability. J. Geophys. Res., 119(23), 13043–13066, https://doi.org/10.1002/2014JD022064.

    Google Scholar 

  7. Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18(17), 3483–3505, https://doi.org/10.1175/JCLI3473.1.

    Article  Google Scholar 

  8. Ding, Q. H., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24(7), 1878–1896, https://doi.org/10.1175/2011JCLI3621.1.

    Article  Google Scholar 

  9. Ding, Y. H., Z. Y. Wang, and Y. Sun., 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. International Journal of Climatology, 28(9), 1139–1161, https://doi.org/10.1002/joc.1615.

    Google Scholar 

  10. Ding, Y. H., Y. Sun, Z. Y. Wang, Y. X. Zhu, and Y. F. Song, 2009: Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. Int. J. Climatol., 29(13), 1926–1944, https://doi.org/10.1002/joc.1759.

    Article  Google Scholar 

  11. Ding, Y. H., and Coauthors, 2013: Interdecadal and interannual variabilities of the Asian summer monsoon and its projection of future change. Chinese Journal of Atmospheric Sciences, 37(2), 253–280, https://doi.org/10.3878/j.issn.1006-9895.2012.12302. (in Chinese)

    Google Scholar 

  12. Duchon, C., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    Article  Google Scholar 

  13. Fang, Y. J., P. L. Wu, M. S. Mizielinski, M. J. Roberts, B. Li, X. G. Xin, and X. W. Liu, 2017: Monsoon intra-seasonal variability in a high-resolution version of Met Office Global Coupled model. Tellus A., 69(1), 1354661, https://doi.org/10.1080/16000870.2017.1354661.

    Article  Google Scholar 

  14. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, https://doi.org/10.1002/qj.497106449.

    Article  Google Scholar 

  15. Han, J. P., and R. H. Zhang, 2009: The dipole mode of the summer rainfall over East China during 1958–2001. Adv. Atmos. Sci., 26(4), 727–735, https://doi.org/10.1007/s00376-009-9014-6.

    Article  Google Scholar 

  16. He, C., A. L. Lin, D. J. Gu, C. H. Li, B. Zheng, and T. J. Zhou, 2016: Interannual variability of Eastern China Summer Rainfall: The origins of the meridional triple and dipole modes. Climate Dyn., 48(1–2), 683–696, https://doi.org/10.1007/s00382-016-3103-x.

    Google Scholar 

  17. He, S. P., Y. Q. Gao, T. Furevik, H. J. Wang, and F. Li, 2017: Teleconnection between sea ice in the Barents sea in June and the silk road, pacific-Japan and East Asian rainfall patterns in August. Adv. Atmos. Sci., 35, 52–64, https://doi.org/10.1007/s00376-017-7029-y.

    Article  Google Scholar 

  18. Hsu, H. H., and S. M. Lin, 2007: Asymmetry of the Tripole rainfall pattern during the East Asian Summer. J. Climate, 20(17), 4443–4458, https://doi.org/10.1175/JCLI4246.1.

    Article  Google Scholar 

  19. Huang, R. H., 1992: The East Asia/Pacific pattern teleconnection of summer circulation and climate anomaly in East Asia. Acta Meteorologica Sinica, 6, 25–37.

    Google Scholar 

  20. Huang, R. H., J. L. Chen, G. Huang, and Q. L. Zhang, 2006: The quasi-biennial oscillation of summer monsoon rainfall in China and its cause. Chinese Journal of Atmospheric Sciences, 30(4), 545–560, https://doi.org/10.3878/j.issn.1006-9895.2006.04.01. (in Chinese)

    Google Scholar 

  21. Huang, R. H., J. L. Chen, and Y. Liu, 2011: Interdecadal variation of the leading modes of summertime precipitation anomalies over eastern China and its association with water vapor transport over East Asia. Chinese Journal of Atmospheric Sciences, 35(4), 589–606, https://doi.org/10.3878/j.issn.1006-9895.2011.04.01.

    Google Scholar 

  22. Jin, D. C., S. N. Hameed, and L. W. Huo, 2016: Recent changes in ENSO teleconnection over the western Pacific impacts the eastern China precipitation dipole. J. Climate, 29(21), 7587–7598, https://doi.org/10.1175/JCLI-D-16-0235.1.

    Article  Google Scholar 

  23. Kumar, K. K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284(5423), 2156–2159, https://doi.org/10.1126/science.284.5423.2156.

    Article  Google Scholar 

  24. Lau, K.-M., 1992: East Asian summer monsoon rainfall variability and climate teleconnection. J. Meteor. Soc. Japan, 70, 211–241, https://doi.org/10.2151/jmsj1965.70.1B211.

    Article  Google Scholar 

  25. Lee, J. Y., B. Wang, K. H. Seo, J. S. Kug, Y. S. Choi, Y. Kosaka, and K. J. Ha, 2014: Future change of Northern Hemisphere summer tropical–extratropical teleconnection in CMIP5 models. J. Climate, 27(10), 3643–3664, https://doi.org/10.1175/JCLI-D-13-00261.1.

    Article  Google Scholar 

  26. Liu, J., B. Wang, and J. Yang., 2008: Forced and internal modes of variability of the East Asian summer monsoon. Climate of the Past Discussions, 4(3), 645–666, https://doi.org/10.5194/cp-4-225-2008.

    Article  Google Scholar 

  27. Ma, Z. G., 2007: The interdecadal trend and shift of dry/wet over the central part of North China and their relationship to the Pacific Decadal Oscillation (PDO). Chinese Science Bulletin, 52(15), 2130–2139, https://doi.org/10.1007/s11434-007-0284-z.

    Article  Google Scholar 

  28. Ma, Z. G., and C. B. Fu., 2003: Interannual characteristics of the surface hydrological variables over the arid and semi-arid areas of northern China. Global and Planetary Change, 37(3), 189–200, https://doi.org/10.1016/S0921-8181(02)00203-5.

    Google Scholar 

  29. Ma, Z. G., and L. J. Shao, 2006: Relationship between dry/wet variation and the Pacific Decade Oscillation (PDO) in Northern China during the last 100 years. Chinese Journal of Atmospheric Sciences, 30(3), 464–474, https://doi.org/10.3878/j.issn.1006-9895.2006.03.10. (in Chinese)

    Google Scholar 

  30. Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373–390, https://doi.org/10.2151/jmsj1965.65.3373.

    Article  Google Scholar 

  31. North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110(7), 699–706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    Article  Google Scholar 

  32. Pei, L., Z. W. Yan, and H. Yang, 2015: Multidecadal variability of dry/wet patterns in eastern China and their relationship with the Pacific Decadal Oscillation in the last 413 years (in Chinese). Chinese Science Bulletin, 60, 97–108, https://doi.org/10.1360/N972014-00790.

    Article  Google Scholar 

  33. Piao, S. L., and Coauthors, 2010: The impacts of climate change on water resources and agriculture in China. Nature, 467(7311), 43–51, https://doi.org/10.1038/nature09364.

    Article  Google Scholar 

  34. Ren, G. Y., and Coauthors, 2011: Multi-time-scale climatic variations over eastern China and implications for the South–NorthWater Diversion Project. Journal of Hydrometeorology, 12(4), 600–617, https://doi.org/10.1175/2011JHM1321.1.

    Article  Google Scholar 

  35. Shi, Y., X.-J. Gao, Y.-G. Wang, and F. Giorgi, 2009: Simulation and projection of monsoon rainfall and rain patterns over eastern China under global warming by RegCM3. Atmospheric and Oceanic Science Letters, 2(5), 308–313, https://doi.org/10.1080/16742834.2009.11446816.

    Article  Google Scholar 

  36. Si, D., and Y. H. Ding, 2016: Oceanic forcings of the interdecadal variability in East Asian summer rainfall. J. Climate, 29(21), 7633–7649, https://doi.org/10.1175/JCLI-D-15-0792.1.

    Article  Google Scholar 

  37. Stephan, C. C., N. P. Klingaman, P. L. Vidale, A. G. Turner, M.-E. Demory, and L. Guo, 2017: A comprehensive analysis of coherent rainfall patterns in China and potential drivers. Part I: Interannual variability. Climate Dyn., 1–20, https://doi.org/10.1007/s00382-017-3882-8.

    Google Scholar 

  38. Sun Y., and Y. H. Ding., 2010: A projection of future changes in summer precipitation and monsoon in East Asia. Science China Earth Sciences, 53(2), 284–300, https://doi.org/10.1007/s11430-009-0123-y.

    Article  Google Scholar 

  39. Takaya, K., and H. Nakamura, 2001: A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58(6), 608–627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    Article  Google Scholar 

  40. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93(4), 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    Article  Google Scholar 

  41. Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20(17), 4316–4340, https://doi.org/10.1175/JCLI4258.1.

    Article  Google Scholar 

  42. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13(9), 1517–1536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    Article  Google Scholar 

  43. Wang, B., B. Q. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences of the United States of America, 110(8), 2718–2722, https://doi.org/10.1073/pnas.1214626110.

    Article  Google Scholar 

  44. Wang, B., J. Liu, J. Yang, T. J. Zhou, and Z. W. Wu, 2009: Distinct principal modes of early and late summer rainfall anomalies in East Asia. J. Climate, 22(13), 3864–3875, https://doi.org/10.1175/2009JCLI2850.1.

    Article  Google Scholar 

  45. Wang, L. Y., X. Yuan, Z. H. Xie, P. L. Wu, and Y. H. Li, 2016: Increasing flash droughts over China during the recent global warming hiatus. Sci. Rep., 6, 30571, https://doi.org/10.1038/srep30571.

    Article  Google Scholar 

  46. Weng, H. Y., K.-M. Lau, and Y. K. Xue, 1999: Multi-scale summer rainfall variability over China and its long-term link to global sea surface temperature variability. J. Meteor. Soc. Japan, 77, 845–857, https://doi.org/10.2151/jmsj1965.77.4845.

    Article  Google Scholar 

  47. Williams, K. D., and Coauthors, 2015: The met office global coupled model 2.0 (GC2) configuration. Geoscientific Model Development, 8(5), 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015.

    Article  Google Scholar 

  48. Wu, B., T. J. Zhou, and T. Li, 2016: Impacts of the Pacific–Japan and circumglobal teleconnection patterns on the interdecadal variability of the East Asian summer monsoon. J. Climate, 29(9), 3253–3271, https://doi.org/10.1175/JCLI-D-15-0105.1.

    Article  Google Scholar 

  49. Wu, P. L., N. Christidis, and P. Stott, 2013: Anthropogenic impact on Earth’s hydrological cycle. Nature Climate Change, 3(9), 807–810, https://doi.org/10.1038/nclimate1932.

    Article  Google Scholar 

  50. Wu, P. L., R. Wood, J. Ridley, and J. Lowe, 2010: Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys. Res. Lett., 37, L12705, https://doi.org/10.1029/2010GL043730.

    Google Scholar 

  51. Wu, P. L., J. Ridley, A. Pardaens, R. Levine, and J. Lowe, 2015: The reversibility of CO2 induced climate change. Climate Dyn., 45(3–4), 745–754, https://doi.org/10.1007/s00382-014-2302-6.

    Article  Google Scholar 

  52. Wu, R. G., 2002: A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. International Journal of Climatology, 22(15), 1879–1895, https://doi.org/10.1002/joc.845.

    Article  Google Scholar 

  53. Xie, S.-P., and S. G. H. Philander, 1994: A coupled oceanatmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A, 46(4), 340–350, https://doi.org/10.3402/tellusa.v46i4.15484.

    Article  Google Scholar 

  54. Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe., 2009: Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J. Climate, 22(3), 730–747, https://doi.org/10.1175/2008JCLI2544.1.

    Article  Google Scholar 

  55. Xie, S. P., Y. Kosaka, Y. Du, K. M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33(4), 411–432, https://doi.org/10.1007/s00376-015-5192-6.

    Article  Google Scholar 

  56. Xiao, C., P. L. Wu, L. X. Zhang, and L. C. Song, 2016: Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Sci. Rep., 6, 38506, https://doi.org/10.1038/srep38506.

    Article  Google Scholar 

  57. Yang, Q., Z. G. Ma, and B. L. Xu, 2016: Modulation of monthly precipitation patterns over East China by the Pacific Decadal Oscillation. Climatic Change, 144, 405–417, https://doi.org/10.1007/s10584-016-1662-9.

    Article  Google Scholar 

  58. Yang, Q., Z. G. Ma, X. G. Fan, Z. L. Yang, Z. F. Xu, and P. L. Wu, 2017: Decadal modulation of precipitation patterns over Eastern China by sea surface temperature anomalies. J. Climate, 30(17), 7017–7033, https://doi.org/10.1175/JCLID-16-0793.1.

    Article  Google Scholar 

  59. Ye, H., and R. Y. Lu, 2012: Dominant patterns of summer rainfall anomalies in East China during 1951–2006. Adv. Atmos. Sci., 29(4), 695–704, https://doi.org/10.1007/s00376-012-1153-5.

    Article  Google Scholar 

  60. Ying, K. R., X. G. Zheng, T. B. Zhao, C. S. Frederiksen, and X.-W. Quan, 2017: Identifying the predictable and unpredictable patterns of spring-to-autumn precipitation over eastern China. Climate Dyn., 48(9–10), 3183–3206, https://doi.org/10.1007/s00382-016-3258-5.

    Article  Google Scholar 

  61. Zhai, P. M., X. B. Zhang, H. Wan, and X. H. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18(7), 1096–1108, https://doi.org/10.1175/JCLI-3318.1.

    Article  Google Scholar 

  62. Zhang, L. X., P. L. Wu, and T. J. Zhou, 2017: Aerosol forcing of extreme summer drought over North China. Environmental Research Letters, 12(3), 034020, https://doi.org/10.1088/1748-9326/aa5fb3.

    Article  Google Scholar 

  63. Zheng, X. T., S.-P. Xie, and Q. Y. Liu, 2011: Response of the Indian Ocean basin mode and its capacitor effect to global warming. J. Climate, 24(23), 6146–6164, https://doi.org/10.1175/2011JCLI4169.1.

    Article  Google Scholar 

  64. Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10(5), 1004–1020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    Article  Google Scholar 

  65. Zhu, J. H., and S. W. Wang, 2002: 80 yr oscillation of summer rainfall over North China and East Asian summer monsoon. Geophys. Res. Lett., 29(14), 1672, https://doi.org/10.1029/2001GL013997.

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their constructive comments and suggestions. This study was jointly sponsored by the National Key R&D Program of China (Grant No. 2016YFA0600404), the National Natural Science Foundation of China (Grant Nos. 41530532 and 41605057), the China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201506001-1), the Jiangsu Collaborative Innovation Center for Climate Change, and the UK–China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peili Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Wu, P., Chen, X. et al. Assessing Global Warming Induced Changes in Summer Rainfall Variability over Eastern China Using the Latest Hadley Centre Climate Model HadGEM3-GC2. Adv. Atmos. Sci. 35, 1077–1093 (2018). https://doi.org/10.1007/s00376-018-7264-x

Download citation

Key words

  • rainfall variability
  • global warming
  • ENSO
  • HadGEM3-GC2

关键词

  • 降水变率
  • 全球增暖
  • ENSO
  • HadGEM3-GC2