Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 8, pp 1077–1093 | Cite as

Assessing Global Warming Induced Changes in Summer Rainfall Variability over Eastern China Using the Latest Hadley Centre Climate Model HadGEM3-GC2

  • Yawen Duan
  • Peili Wu
  • Xiaolong Chen
  • Zhuguo Ma
Original Paper

Abstract

Summer precipitation anomalies over eastern China are characterized spatially by meridionally banded structures fluctuating on interannual and interdecadal timescales, leading to regional droughts and floods. In addition to long-term trends, how these patterns may change under global warming has important implications for agricultural planning and water resources over this densely populated area. Using the latest Hadley Centre climate model, HadGEM3-GC2, this paper investigates the potential response of summer precipitation patterns over this region, by comparing the leading modes between a 4×CO2 simulation and the model’s pre-industrial control simulation. Empirical Orthogonal Function (EOF) analyses show that the first two leading modes account for about 20% of summer rainfall variability. EOF1 is a monopole mode associated with the developing phase of ENSO events and EOF2 is a dipole mode associated with the decaying phase of ENSO. Under 4×CO2 forcing, the dipole mode with a south–north orientation becomes dominant because of a strengthened influence from excessive warming of the Indian Ocean. On interdecadal time scales, the first EOF looks very different from the control simulation, showing a dipole mode of east–west contrast with enhanced influence from high latitudes.

Key words

rainfall variability global warming ENSO HadGEM3-GC2 

摘要

在年际和年代际尺度上, 中国东部的夏季降水异常通常表现为明显的经向型特征, 对区域性旱涝产生影响. 在气候变化影响下, 除了长期趋势外, 降水变率尤其是空间分布特征的变化对该地区的农业生产、水资源调度等具有重要意义. 通过对比分析英国气象局Hadley中心最新气候模式HadGEM3-GC2的骤增4倍CO2及工业革命前控制试验, 本文研究了增暖背景下该地区夏季降水模态的可能变化. 基于EOF分析的结果表明, 在该模式的控制实验中, 前两个降水模态占总降水变率的20%. EOF1是一个单极型, 与ENSO事件的发展位相相关;而EOF2为偶极型, 与ENSO事件的衰减位相相关. 骤增4倍CO2强迫下, 年际尺度上, 偶极型变为了主导模态, 这主要是由于印度洋的作用增强所致. 而年代际尺度上, 降水模态受到更多来自高纬度的影响, 增暖下主导模态与控制实验差距较大, 表现出更强的东-西向分布特征.

关键词

降水变率 全球增暖 ENSO HadGEM3-GC2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank two anonymous reviewers for their constructive comments and suggestions. This study was jointly sponsored by the National Key R&D Program of China (Grant No. 2016YFA0600404), the National Natural Science Foundation of China (Grant Nos. 41530532 and 41605057), the China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201506001-1), the Jiangsu Collaborative Innovation Center for Climate Change, and the UK–China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund.

References

  1. Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224–232, https://doi.org/10.1038/nature01092. CrossRefGoogle Scholar
  2. Cai, W. J., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4(2), 111–116, https://doi.org/10.1038/nclimate2100. CrossRefGoogle Scholar
  3. Chadwick, R., P. L. Wu, P. Good, and T. Andrews, 2012: Asymmetries in tropical rainfall and circulation patterns in idealised CO2 removal experiments. Climate Dyn., 40(1), 295–316, https://doi.org/10.1007/s00382-012-1287-2. Google Scholar
  4. Chen, G. S., and R. H. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in Northwest China. J. Climate, 25(22), 7834–7851, https://doi.org/10.1175/JCLI-D-11-00684.1. CrossRefGoogle Scholar
  5. Chen, T. C., and M. C. Yen, 1994: Interannual variation of the Indian monsoon simulated by the NCAR Community Climate Model: Effect of the tropical Pacific SST. J. Climate, 7(9), 1403–1415, https://doi.org/10.1175/1520-0442(1994)007<1403:IVOTIM>2.0.CO;2.CrossRefGoogle Scholar
  6. Chen, X. L., and T. J. Zhou, 2014: Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific-Japan pattern interannual variability. J. Geophys. Res., 119(23), 13043–13066, https://doi.org/10.1002/2014JD022064. Google Scholar
  7. Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18(17), 3483–3505, https://doi.org/10.1175/JCLI3473.1. CrossRefGoogle Scholar
  8. Ding, Q. H., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24(7), 1878–1896, https://doi.org/10.1175/2011JCLI3621.1. CrossRefGoogle Scholar
  9. Ding, Y. H., Z. Y. Wang, and Y. Sun., 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. International Journal of Climatology, 28(9), 1139–1161, https://doi.org/10.1002/joc.1615. Google Scholar
  10. Ding, Y. H., Y. Sun, Z. Y. Wang, Y. X. Zhu, and Y. F. Song, 2009: Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. Int. J. Climatol., 29(13), 1926–1944, https://doi.org/10.1002/joc.1759. CrossRefGoogle Scholar
  11. Ding, Y. H., and Coauthors, 2013: Interdecadal and interannual variabilities of the Asian summer monsoon and its projection of future change. Chinese Journal of Atmospheric Sciences, 37(2), 253–280, https://doi.org/10.3878/j.issn.1006-9895.2012.12302. (in Chinese)Google Scholar
  12. Duchon, C., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.CrossRefGoogle Scholar
  13. Fang, Y. J., P. L. Wu, M. S. Mizielinski, M. J. Roberts, B. Li, X. G. Xin, and X. W. Liu, 2017: Monsoon intra-seasonal variability in a high-resolution version of Met Office Global Coupled model. Tellus A., 69(1), 1354661, https://doi.org/10.1080/16000870.2017.1354661. CrossRefGoogle Scholar
  14. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, https://doi.org/10.1002/qj.497106449. CrossRefGoogle Scholar
  15. Han, J. P., and R. H. Zhang, 2009: The dipole mode of the summer rainfall over East China during 1958–2001. Adv. Atmos. Sci., 26(4), 727–735, https://doi.org/10.1007/s00376-009-9014-6. CrossRefGoogle Scholar
  16. He, C., A. L. Lin, D. J. Gu, C. H. Li, B. Zheng, and T. J. Zhou, 2016: Interannual variability of Eastern China Summer Rainfall: The origins of the meridional triple and dipole modes. Climate Dyn., 48(1–2), 683–696, https://doi.org/10.1007/s00382-016-3103-x. Google Scholar
  17. He, S. P., Y. Q. Gao, T. Furevik, H. J. Wang, and F. Li, 2017: Teleconnection between sea ice in the Barents sea in June and the silk road, pacific-Japan and East Asian rainfall patterns in August. Adv. Atmos. Sci., 35, 52–64, https://doi.org/10.1007/s00376-017-7029-y. CrossRefGoogle Scholar
  18. Hsu, H. H., and S. M. Lin, 2007: Asymmetry of the Tripole rainfall pattern during the East Asian Summer. J. Climate, 20(17), 4443–4458, https://doi.org/10.1175/JCLI4246.1. CrossRefGoogle Scholar
  19. Huang, R. H., 1992: The East Asia/Pacific pattern teleconnection of summer circulation and climate anomaly in East Asia. Acta Meteorologica Sinica, 6, 25–37.Google Scholar
  20. Huang, R. H., J. L. Chen, G. Huang, and Q. L. Zhang, 2006: The quasi-biennial oscillation of summer monsoon rainfall in China and its cause. Chinese Journal of Atmospheric Sciences, 30(4), 545–560, https://doi.org/10.3878/j.issn.1006-9895.2006.04.01. (in Chinese)Google Scholar
  21. Huang, R. H., J. L. Chen, and Y. Liu, 2011: Interdecadal variation of the leading modes of summertime precipitation anomalies over eastern China and its association with water vapor transport over East Asia. Chinese Journal of Atmospheric Sciences, 35(4), 589–606, https://doi.org/10.3878/j.issn.1006-9895.2011.04.01. Google Scholar
  22. Jin, D. C., S. N. Hameed, and L. W. Huo, 2016: Recent changes in ENSO teleconnection over the western Pacific impacts the eastern China precipitation dipole. J. Climate, 29(21), 7587–7598, https://doi.org/10.1175/JCLI-D-16-0235.1. CrossRefGoogle Scholar
  23. Kumar, K. K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284(5423), 2156–2159, https://doi.org/10.1126/science.284.5423.2156. CrossRefGoogle Scholar
  24. Lau, K.-M., 1992: East Asian summer monsoon rainfall variability and climate teleconnection. J. Meteor. Soc. Japan, 70, 211–241, https://doi.org/10.2151/jmsj1965.70.1B211. CrossRefGoogle Scholar
  25. Lee, J. Y., B. Wang, K. H. Seo, J. S. Kug, Y. S. Choi, Y. Kosaka, and K. J. Ha, 2014: Future change of Northern Hemisphere summer tropical–extratropical teleconnection in CMIP5 models. J. Climate, 27(10), 3643–3664, https://doi.org/10.1175/JCLI-D-13-00261.1. CrossRefGoogle Scholar
  26. Liu, J., B. Wang, and J. Yang., 2008: Forced and internal modes of variability of the East Asian summer monsoon. Climate of the Past Discussions, 4(3), 645–666, https://doi.org/10.5194/cp-4-225-2008. CrossRefGoogle Scholar
  27. Ma, Z. G., 2007: The interdecadal trend and shift of dry/wet over the central part of North China and their relationship to the Pacific Decadal Oscillation (PDO). Chinese Science Bulletin, 52(15), 2130–2139, https://doi.org/10.1007/s11434-007-0284-z. CrossRefGoogle Scholar
  28. Ma, Z. G., and C. B. Fu., 2003: Interannual characteristics of the surface hydrological variables over the arid and semi-arid areas of northern China. Global and Planetary Change, 37(3), 189–200, https://doi.org/10.1016/S0921-8181(02)00203-5. Google Scholar
  29. Ma, Z. G., and L. J. Shao, 2006: Relationship between dry/wet variation and the Pacific Decade Oscillation (PDO) in Northern China during the last 100 years. Chinese Journal of Atmospheric Sciences, 30(3), 464–474, https://doi.org/10.3878/j.issn.1006-9895.2006.03.10. (in Chinese)Google Scholar
  30. Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373–390, https://doi.org/10.2151/jmsj1965.65.3373. CrossRefGoogle Scholar
  31. North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110(7), 699–706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.CrossRefGoogle Scholar
  32. Pei, L., Z. W. Yan, and H. Yang, 2015: Multidecadal variability of dry/wet patterns in eastern China and their relationship with the Pacific Decadal Oscillation in the last 413 years (in Chinese). Chinese Science Bulletin, 60, 97–108, https://doi.org/10.1360/N972014-00790. CrossRefGoogle Scholar
  33. Piao, S. L., and Coauthors, 2010: The impacts of climate change on water resources and agriculture in China. Nature, 467(7311), 43–51, https://doi.org/10.1038/nature09364. CrossRefGoogle Scholar
  34. Ren, G. Y., and Coauthors, 2011: Multi-time-scale climatic variations over eastern China and implications for the South–NorthWater Diversion Project. Journal of Hydrometeorology, 12(4), 600–617, https://doi.org/10.1175/2011JHM1321.1. CrossRefGoogle Scholar
  35. Shi, Y., X.-J. Gao, Y.-G. Wang, and F. Giorgi, 2009: Simulation and projection of monsoon rainfall and rain patterns over eastern China under global warming by RegCM3. Atmospheric and Oceanic Science Letters, 2(5), 308–313, https://doi.org/10.1080/16742834.2009.11446816. CrossRefGoogle Scholar
  36. Si, D., and Y. H. Ding, 2016: Oceanic forcings of the interdecadal variability in East Asian summer rainfall. J. Climate, 29(21), 7633–7649, https://doi.org/10.1175/JCLI-D-15-0792.1. CrossRefGoogle Scholar
  37. Stephan, C. C., N. P. Klingaman, P. L. Vidale, A. G. Turner, M.-E. Demory, and L. Guo, 2017: A comprehensive analysis of coherent rainfall patterns in China and potential drivers. Part I: Interannual variability. Climate Dyn., 1–20, https://doi.org/10.1007/s00382-017-3882-8. Google Scholar
  38. Sun Y., and Y. H. Ding., 2010: A projection of future changes in summer precipitation and monsoon in East Asia. Science China Earth Sciences, 53(2), 284–300, https://doi.org/10.1007/s11430-009-0123-y. CrossRefGoogle Scholar
  39. Takaya, K., and H. Nakamura, 2001: A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58(6), 608–627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.CrossRefGoogle Scholar
  40. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93(4), 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1. CrossRefGoogle Scholar
  41. Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20(17), 4316–4340, https://doi.org/10.1175/JCLI4258.1. CrossRefGoogle Scholar
  42. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13(9), 1517–1536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.CrossRefGoogle Scholar
  43. Wang, B., B. Q. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences of the United States of America, 110(8), 2718–2722, https://doi.org/10.1073/pnas.1214626110. CrossRefGoogle Scholar
  44. Wang, B., J. Liu, J. Yang, T. J. Zhou, and Z. W. Wu, 2009: Distinct principal modes of early and late summer rainfall anomalies in East Asia. J. Climate, 22(13), 3864–3875, https://doi.org/10.1175/2009JCLI2850.1. CrossRefGoogle Scholar
  45. Wang, L. Y., X. Yuan, Z. H. Xie, P. L. Wu, and Y. H. Li, 2016: Increasing flash droughts over China during the recent global warming hiatus. Sci. Rep., 6, 30571, https://doi.org/10.1038/srep30571. CrossRefGoogle Scholar
  46. Weng, H. Y., K.-M. Lau, and Y. K. Xue, 1999: Multi-scale summer rainfall variability over China and its long-term link to global sea surface temperature variability. J. Meteor. Soc. Japan, 77, 845–857, https://doi.org/10.2151/jmsj1965.77.4845. CrossRefGoogle Scholar
  47. Williams, K. D., and Coauthors, 2015: The met office global coupled model 2.0 (GC2) configuration. Geoscientific Model Development, 8(5), 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015. CrossRefGoogle Scholar
  48. Wu, B., T. J. Zhou, and T. Li, 2016: Impacts of the Pacific–Japan and circumglobal teleconnection patterns on the interdecadal variability of the East Asian summer monsoon. J. Climate, 29(9), 3253–3271, https://doi.org/10.1175/JCLI-D-15-0105.1. CrossRefGoogle Scholar
  49. Wu, P. L., N. Christidis, and P. Stott, 2013: Anthropogenic impact on Earth’s hydrological cycle. Nature Climate Change, 3(9), 807–810, https://doi.org/10.1038/nclimate1932. CrossRefGoogle Scholar
  50. Wu, P. L., R. Wood, J. Ridley, and J. Lowe, 2010: Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys. Res. Lett., 37, L12705, https://doi.org/10.1029/2010GL043730. Google Scholar
  51. Wu, P. L., J. Ridley, A. Pardaens, R. Levine, and J. Lowe, 2015: The reversibility of CO2 induced climate change. Climate Dyn., 45(3–4), 745–754, https://doi.org/10.1007/s00382-014-2302-6. CrossRefGoogle Scholar
  52. Wu, R. G., 2002: A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. International Journal of Climatology, 22(15), 1879–1895, https://doi.org/10.1002/joc.845. CrossRefGoogle Scholar
  53. Xie, S.-P., and S. G. H. Philander, 1994: A coupled oceanatmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A, 46(4), 340–350, https://doi.org/10.3402/tellusa.v46i4.15484. CrossRefGoogle Scholar
  54. Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe., 2009: Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J. Climate, 22(3), 730–747, https://doi.org/10.1175/2008JCLI2544.1. CrossRefGoogle Scholar
  55. Xie, S. P., Y. Kosaka, Y. Du, K. M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33(4), 411–432, https://doi.org/10.1007/s00376-015-5192-6. CrossRefGoogle Scholar
  56. Xiao, C., P. L. Wu, L. X. Zhang, and L. C. Song, 2016: Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Sci. Rep., 6, 38506, https://doi.org/10.1038/srep38506. CrossRefGoogle Scholar
  57. Yang, Q., Z. G. Ma, and B. L. Xu, 2016: Modulation of monthly precipitation patterns over East China by the Pacific Decadal Oscillation. Climatic Change, 144, 405–417, https://doi.org/10.1007/s10584-016-1662-9. CrossRefGoogle Scholar
  58. Yang, Q., Z. G. Ma, X. G. Fan, Z. L. Yang, Z. F. Xu, and P. L. Wu, 2017: Decadal modulation of precipitation patterns over Eastern China by sea surface temperature anomalies. J. Climate, 30(17), 7017–7033, https://doi.org/10.1175/JCLID-16-0793.1. CrossRefGoogle Scholar
  59. Ye, H., and R. Y. Lu, 2012: Dominant patterns of summer rainfall anomalies in East China during 1951–2006. Adv. Atmos. Sci., 29(4), 695–704, https://doi.org/10.1007/s00376-012-1153-5. CrossRefGoogle Scholar
  60. Ying, K. R., X. G. Zheng, T. B. Zhao, C. S. Frederiksen, and X.-W. Quan, 2017: Identifying the predictable and unpredictable patterns of spring-to-autumn precipitation over eastern China. Climate Dyn., 48(9–10), 3183–3206, https://doi.org/10.1007/s00382-016-3258-5. CrossRefGoogle Scholar
  61. Zhai, P. M., X. B. Zhang, H. Wan, and X. H. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18(7), 1096–1108, https://doi.org/10.1175/JCLI-3318.1. CrossRefGoogle Scholar
  62. Zhang, L. X., P. L. Wu, and T. J. Zhou, 2017: Aerosol forcing of extreme summer drought over North China. Environmental Research Letters, 12(3), 034020, https://doi.org/10.1088/1748-9326/aa5fb3. CrossRefGoogle Scholar
  63. Zheng, X. T., S.-P. Xie, and Q. Y. Liu, 2011: Response of the Indian Ocean basin mode and its capacitor effect to global warming. J. Climate, 24(23), 6146–6164, https://doi.org/10.1175/2011JCLI4169.1. CrossRefGoogle Scholar
  64. Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10(5), 1004–1020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.CrossRefGoogle Scholar
  65. Zhu, J. H., and S. W. Wang, 2002: 80 yr oscillation of summer rainfall over North China and East Asian summer monsoon. Geophys. Res. Lett., 29(14), 1672, https://doi.org/10.1029/2001GL013997. CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yawen Duan
    • 1
    • 2
  • Peili Wu
    • 3
  • Xiaolong Chen
    • 4
  • Zhuguo Ma
    • 1
    • 2
  1. 1.Key Laboratory of Regional Climate-Environment Research for Temperate East Asia (TEA)Institute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Met Office Hadley CentreExeterUK
  4. 4.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations