Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 8, pp 994–1002 | Cite as

Impacts of Anthropogenic Forcings and El Niño on Chinese Extreme Temperatures

  • N. Freychet
  • S. Sparrow
  • S. F. B. Tett
  • M. J. Mineter
  • G. C. Hegerl
  • D. C. H. Wallom
Open Access
Original Paper

Abstract

This study investigates the potential influences of anthropogenic forcings and natural variability on the risk of summer extreme temperatures over China. We use three multi-thousand-member ensemble simulations with different forcings (with or without anthropogenic greenhouse gases and aerosol emissions) to evaluate the human impact, and with sea surface temperature patterns from three different years around the El Niño–Southern Oscillation (ENSO) 2015/16 event (years 2014, 2015 and 2016) to evaluate the impact of natural variability. A generalized extreme value (GEV) distribution is used to fit the ensemble results. Based on these model results, we find that, during the peak of ENSO (2015), daytime extreme temperatures are smaller over the central China region compared to a normal year (2014). During 2016, the risk of nighttime extreme temperatures is largely increased over the eastern coastal region. Both anomalies are of the same magnitude as the anthropogenic influence. Thus, ENSO can amplify or counterbalance (at a regional and annual scale) anthropogenic effects on extreme summer temperatures over China. Changes are mainly due to changes in the GEV location parameter. Thus, anomalies are due to a shift in the distributions and not to a change in temperature variability.

Key words

extreme temperatures ENSO anthropogenic impact climate risk 

摘要

本研究探讨了人为强迫和自然变率对中国夏季极端高温灾害的潜在影响. 我们使用了不同强迫条件下(包括或者不包括温室气体和气溶胶排放)的三千多个成员集合模拟结果, 来评估人为强迫的影响;同时, 利用最近一次ENSO事件发展演变过程中的三个不同位相年份(2014中性年、2015厄尔尼诺年、2016拉尼娜年)对应的海表温度型态来评估自然变率的影响. 我们利用广义极值分布来分析集合结果. 基于模式结果, 我们发现在ENSO峰值期间(2015年), 日间极端气温在中国中部地区偏小. 在2016年, 夜间极端高温灾害在中国东部沿海地区大幅增加. 上述二者(自然变率的影响)都与人为影响的量级相当. 因此, 我们认为ENSO事件(在区域和年际尺度上)能够放大或者抵消人为强迫对中国夏季极端高温的影响. 此外, 本研究揭示了中国夏季极端高温的变化主要取决于广义极值分布参数的变化, 这意味着中国夏季极端高温的变化是由温度极值分布的偏移造成的, 而非温度变率本身强度的变化.

关键词

极端高温 厄尔尼诺-南方涛动 人为影响 气候灾害 

Notes

Acknowledgements

This work and all contributors were supported by the UK–China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund. We would like to thank the Met Office Hadley Centre PRECIS team for their technical and scientific support for the development and application of weather@home. Finally, we would like to thank all of the volunteers who have donated their computing time to climateprediction.net and weather@home.

Supplementary material

376_2018_7258_MOESM1_ESM.pdf (3.1 mb)
Electronic Supplementary Material to: Impacts of Anthropogenic Forcings and El Niño on Chinese Extreme Temperatures

References

  1. Black, M. T., and D. J. Karoly, 2016: Southern Australia’s warmest October on record: The role of ENSO and climate change. Bull. Amer. Meteor. Soc., 97, S118–S121, https://doi.org/10.1175/BAMS-D-16-0124.1. CrossRefGoogle Scholar
  2. Black, M. T., and Coauthors, 2016: The weather@home regional climate modelling project for Australia and New Zealand. Geoscientific Model Development, 9, 3161–3176, https://doi.org/10.5194/gmd-9-3161-2016. CrossRefGoogle Scholar
  3. Chen, Y., and P. M. Zhai, 2017: Revisiting summertime hot extremes in China during 1961-2015: Overlooked compound extremes and significant changes. Geophys. Res. Lett., 44, 5096–5103, https://doi.org/10.1002/2016GL072281. CrossRefGoogle Scholar
  4. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137(656), 553–597, https://doi.org/10.1002/qj.828. CrossRefGoogle Scholar
  5. Dong, B. W., R. T. Sutton, and L. Shaffrey, 2017: Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe. Climate Dyn., 48, 1537–1554, https://doi.org/10.1007/s00382-016-3158-8. CrossRefGoogle Scholar
  6. Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice analysis (OSTIA) system. Remote Sensing of Environment, 116, 140–158, https://doi.org/10.1016/j.rse.2010.10.017. CrossRefGoogle Scholar
  7. Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall.CrossRefGoogle Scholar
  8. Essery, R. and D. B. Clark, 2003: Developments in the MOSES 2 land-surface model for PILPS 2e. Global Planet Change, 38, 161–164, https://doi.org/10.1016/S0921-8181(03)00026-2. CrossRefGoogle Scholar
  9. Freychet, N., S. Tett, J. Wang, and G. Hegerl, 2017: Summer heat waves over Eastern China: Dynamical processes and trend attribution. Environmental Research Letters, 12, 024015, https://doi.org/10.1088/1748-9326/aa5ba3. CrossRefGoogle Scholar
  10. Guillod, B. P., and Coauthors, 2017: weather@home 2: validation of an improved global-regional climate modelling system. Geosci. Model Dev., 10, 1849–1872, https://doi.org/10.5194/gmd-10-1849-2017. CrossRefGoogle Scholar
  11. Haustein, K., and Coauthors, 2016: Real-time extreme weather event attribution with forecast seasonal SSTs. Environmental Research Letters, 11, 064006, https://doi.org/10.1088/1748-9326/11/6/064006. CrossRefGoogle Scholar
  12. Hu, K. M., G. Huang, and R. G. Wu, 2013: A strengthened influence of ENSO on August high temperature extremes over the Southern Yangtze River Valley since the Late 1980s. J. Climate, 26, 2205–2221, https://doi.org/10.1175/JCLI-D-12-00277.1. CrossRefGoogle Scholar
  13. Hu, S. N., and A. V. Fedorov, 2017: The extreme El Niño of 2015–2016 and the end of global warming hiatus. Geophys. Res. Lett., 44, 3816–3824, https://doi.org/10.1002/2017GL072908. CrossRefGoogle Scholar
  14. Jones, A., D. L. Roberts, M. J. Woodage, & C. E. Johnson, 2001: Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. J. Geophys. Res.: Atmospheres, 106(D17), 20293–20310, https://doi.org/10.1029/2000JD000089. CrossRefGoogle Scholar
  15. Kasoar, M., A. Voulgarakis, J.-F. Lamarque, D. T. Shindell, N. Bellouin, W. J. Collins, G. Faluvegi, and K. Tsigaridis, 2016: Regional and global temperature response to anthropogenic SO2 emissions from China in three climate models. Atmospheric Chemistry and Physics, 16, 9785–9804, https://doi.org/10.5194/acp-16-9785-2016. CrossRefGoogle Scholar
  16. Li, C. X., T. B. Zhao, and K. R. Ying, 2016: Effects of anthropogenic aerosols on temperature changes in China during the twentieth century based on CMIP5 models. Theor. Appl. Climatol., 125, 529–540, https://doi.org/10.1007/s00704-015-1527-6. CrossRefGoogle Scholar
  17. Li, S. H., P. W. Mote, D. E. Rupp, D. Vickers, R. Mera, and M. Allen, 2015: Evaluation of a regional climate modeling effort for the Western United States using a superensemble from weather@home. J. Climate, 28, 7470–7488, https://doi.org/10.1175/JCLI-D-14-00808.1. CrossRefGoogle Scholar
  18. Luo, M., and N.-G. Lau, 2017: Heat waves in Southern China: Synoptic behavior, long-term change, and urbanization effects. J. Climate, 30(2), 703–720, https://doi.org/10.1175/JCLI-D-16-0269.1. CrossRefGoogle Scholar
  19. Ma, S. M., T. J. Zhou, D. A. Stone, O. Angélil, and H. Shiogama, 2017: Attribution of the July–August 2013 heat event in Central and Eastern China to anthropogenic greenhouse gas emissions. Environmental Research Letters, 12, 054020, https://doi.org/10.1088/1748-9326/aa69d2. CrossRefGoogle Scholar
  20. Marthews, T. R., F. E. L. Otto, D. Mitchell, S. J. Dadson, and R. G. Jones, 2015: The 2014 drought in the Horn of Africa: Attribution of meteorological drivers. Bull. Amer. Meteor. Soc., 96, S83–S88, https://doi.org/10.1175/BAMS-D-15-00115.1. CrossRefGoogle Scholar
  21. Mascioli, N. R., A. M. Fiore, M. Previdi, and G. Correa, 2016: Temperature and precipitation extremes in the United States: Quantifying the responses to anthropogenic aerosols and greenhouse gases. J. Climate, 29, 2689–2701, https://doi.org/10.1175/JCLI-D-15-0478.1. CrossRefGoogle Scholar
  22. McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2016: ENSO as an integrating concept in earth science. Science, 314, 1740–1745, https://doi.org/10.1126/science.1132588. CrossRefGoogle Scholar
  23. Mitchell, D., and Coauthors, 2016: Attributing human mortality during extreme heat waves to anthropogenic climate change. Environmental Research Letters, 11, 074006, https://doi.org/10.1088/1748-9326/11/7/074006. CrossRefGoogle Scholar
  24. Otto, F. E. L., 2017: Attribution of weather and climate events. Annual Review of Environment and Resources, 42, 627–646, https://doi.org/10.1146/annurev-environ-102016-060847. CrossRefGoogle Scholar
  25. Peng, X., Q. N. She, L. B. Long, M. Liu, Q. Xu, J. X. Zhang, and W. N. Xiang, 2017: Long-term trend in ground-based air temperature and its responses to atmospheric circulation and anthropogenic activity in the Yangtze River Delta, China. Atmospheric Research, 195, 20–30, https://doi.org/10.1016/j.atmosres.2017.05.013. CrossRefGoogle Scholar
  26. Qian, C., and Coauthors, 2018: Human influence on the recordbreaking cold event in January of 2016 in Eastern China. Bull. Amer. Meteor. Soc., 99(1), S118–S122, https://doi.org/10.1175/BAMS-D-17-0095.1. CrossRefGoogle Scholar
  27. Ren, Y.-Y., D. Parker, G.-Y. Ren, and R. Dunn, 2016: Tempospatial characteristics of sub-daily temperature trends in mainland China. Climate Dyn., 46, 2737–2748, https://doi.org/10.1007/s00382-015-2726-7. CrossRefGoogle Scholar
  28. Sarofim, M. C., and Coauthors, 2016: Temperature-related death and illness. Chapter 2, The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment, U.S. Global Change Research Program, 43–68.Google Scholar
  29. Sarojini, B. B., P. A. Stott, and E. Black, 2016: Detection and attribution of human influence on regional precipitation. Nature Climate Change, 6(7), 669–675, https://doi.org/10.1038/nclimate2976. CrossRefGoogle Scholar
  30. Schaller, N., and Coauthors, 2016: Human influence on climate in the 2014 southern England winter floods and their impacts. Nature Climate Change, 6, 627–634, https://doi.org/10.1038/nclimate2927. CrossRefGoogle Scholar
  31. Sparrow, S., D. Wallom, Z. Klimont, C. Hayes, and W. Ingram, 2016a: 1990 to 2050 Atmospheric SO2 Ancillary Files for HadCM3. [Available online from https://figshare.com/articles/AtmosphericSO 2 Ancillary Files for HadCM3/3409186]Google Scholar
  32. Sparrow, S., D. Wallom, and W. Ingram, 2016b: Sulphate Ancillary Metadata and Processing Metadata and Scripts. figshare. https://doi.org/10.6084/m9.figshare.3469199.v3.
  33. Sun, Q. H., C. Y. Miao, A. AghaKouchak, and Q. Y. Duan, 2017: Unraveling anthropogenic influence on the changing risk of heat waves in China. Geophys. Res. Lett., 44, 5078–5085, https://doi.org/10.1002/2017GL073531. CrossRefGoogle Scholar
  34. Sun, Y., L. C. Song, H. Yin, B. T. Zhou, T. Hu, X. B. Zhang and P. Stott, 2016: Human influence on the 2015 extreme high temperature events in Western China. Bull. Amer. Meteor. Soc., 97(12), S102–S106, https://doi.org/10.1175/BAMS-D-16-0158.1. CrossRefGoogle Scholar
  35. Yin, H., Y. Sun, H. Wan, X. B. Zhang, and C. H. Lu, 2017: Detection of anthropogenic influence on the intensity of extreme temperatures in China. Int. J. Climatol., 37, 1229–1237, https://doi.org/10.1002/joc.4771. CrossRefGoogle Scholar
  36. Zhang, H. H., T. L. Delworth, F. R. Zeng, G. Vecchi, K. Paffendorf, and L. W. Jia, 2016: Detection, attribution, and projection of regional rainfall changes on (multi-) decadal time scales: A focus on Southeastern South America. J. Climate, 29, 8515–8534, https://doi.org/10.1175/JCLI-D-16-0287.1. CrossRefGoogle Scholar
  37. Zhou, C.-L., and K.-C. Wang, 2016: Coldest temperature extreme monotonically increased and hottest extreme oscillated over Northern hemisphere land during last 114 years. Scientific Reports, 6, 25721, https://doi.org/10.1038/srep25721. CrossRefGoogle Scholar

Copyright information

© The Authors 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • N. Freychet
    • 1
  • S. Sparrow
    • 2
  • S. F. B. Tett
    • 1
  • M. J. Mineter
    • 1
  • G. C. Hegerl
    • 1
  • D. C. H. Wallom
    • 2
  1. 1.School of GeosciencesUniversity of EdinburghEdinburghUK
  2. 2.Oxford e-Research CentreUniversity of OxfordOxfordUK

Personalised recommendations