Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 8, pp 927–941 | Cite as

Interannual Variability of Late-spring Circulation and Diabatic Heating over the Tibetan Plateau Associated with Indian Ocean Forcing

  • Yu Zhao
  • Anmin Duan
  • Guoxiong Wu
Original Paper

Abstract

The thermal forcing of the Tibetan Plateau (TP) during boreal spring, which involves surface sensible heating, latent heating released by convection and radiation flux heat, is critical for the seasonal and subseasonal variation of the East Asian summer monsoon. Distinct from the situation in March and April when the TP thermal forcing is modulated by the sea surface temperature anomaly (SSTA) in the North Atlantic, the present study shows that it is altered mainly by the SSTA in the Indian Ocean Basin Mode (IOBM) in May, according to in-situ observations over the TP and MERRA reanalysis data. In the positive phase of the IOBM, a local Hadley circulation is enhanced, with its ascending branch over the southwestern Indian Ocean and a descending one over the southeastern TP, leading to suppressed precipitation and weaker latent heat over the eastern TP. Meanwhile, stronger westerly flow and surface sensible heating emerges over much of the TP, along with slight variations in local net radiation flux due to cancellation between its components. The opposite trends occur in the negative phase of the IOBM. Moreover, the main associated physical processes can be validated by a series of sensitivity experiments based on an atmospheric general circulation model, FAMIL. Therefore, rather than influenced by the remote SSTAs of the northern Atlantic in the early spring, the thermal forcing of the TP is altered by the Indian Ocean SSTA in the late spring on an interannual timescale.

Key words

Indian Ocean Tibetan Plateau circulation diabatic heating 

摘要

青藏高原(以下简称高原)热力强迫作用, 包括地表感热, 大气凝结潜热以及气柱净辐射通量, 对东亚夏季风的季节以及次季节变率有着重要影响.本文基于台站观测资料以及MERRA再分析数据集, 发现北大西洋海温异常是3-4月高原非绝热加热年际变率的主控因子, 而晚春(5月)高原大气热源则主要受印度洋海盆一致模(IOBM)的影响.在IOBM正位相年, 伴随着西南印度洋的异常上升以及高原东南部的异常下沉运动, 印度洋上空的局地Hadley环流将会加强, 对应于高原近地层西风与地表感热的显著正异常, 而高原降水和凝结潜热总体受到抑制.与此同时, 高原上的辐射通量由于各分量之间的相互抵消适应仅有微弱变化;IOBM负位相年则相反.此外, 基于大气环流模式的一系列敏感性实验还进一步揭示了主要物理过程.

关键词

印度洋 青藏高原 大气环流 非绝热加热 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 91637312, 41725018 and 91437219), the UK China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund, the Key Research Program of Frontier Sciences, and the Special Program for Applied Research on Super Computation of the National Natural Science Foundation of China (NSFC)–Guangdong Joint Fund (second phase) under Grant No. U1501501.

References

  1. Abe, M., T. Yasunari, and A. Kitoh, 2005: Sensitivity of the central Asian climate to uplift of the Tibetan Plateau in the coupled climate model (MRI-CGCM1). Island Arc, 14, 378–388, https://doi.org/10.1111/j.1440-1738.2005.00493.x. CrossRefGoogle Scholar
  2. Chen, X. Y., and Q. L. You, 2017: Effect of Indian Ocean SST on Tibetan Plateau precipitation in the early rainy season. J. Climate, 30, 8973–8985, https://doi.org/10.1175/JCLI-D-16-0814.1. CrossRefGoogle Scholar
  3. Cui, Y. F., A. M. Duan, Y. M. Liu, and G. X. Wu, 2015: Interannual variability of the spring atmospheric heat source over the Tibetan Plateau forced by the North Atlantic SSTA. Climate Dyn., 45, 1617–1634, https://doi.org/10.1007/s00382-014-2417-9. CrossRefGoogle Scholar
  4. Duan, A. M., and G. X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24, 793–807, https://doi.org/10.1007/s00382-004-0488-8. CrossRefGoogle Scholar
  5. Duan, A. M., and G. X. Wu, 2008: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations. J. Climate, 21(13), 3149–3164, https://doi.org/10.1175/2007JCLI1912.1. Google Scholar
  6. Duan, A. M., Y. M. Liu, and G. X. Wu, 2005: Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer. Science in China Series D: Earth Sciences, 48, 250–257, https://doi.org/10.1360/02yd0510. CrossRefGoogle Scholar
  7. Feng, J., J. P. Li, and F. Xie, 2013: Long-term variation of the principal mode of boreal spring Hadley circulation linked to SST over the Indo-Pacific Warm Pool. J. Climate, 26, 532–544, https://doi.org/10.1175/JCLI-D-12-00066.1. CrossRefGoogle Scholar
  8. Flohn, H., 1957: Large-scale aspects of the “summer monsoon” in South and East Asia. J. Meteor. Soc. Japan Ser. II, 35A, 180–186, https://doi.org/10.2151/jmsj1923.35A.0180. CrossRefGoogle Scholar
  9. Gong, D. Y., and S. W. Wang, 2003: Influence of Arctic Oscillation on winter climate over China. Journal of Geographical Sciences, 13, 208–216, https://doi.org/10.1007/BF02837460. CrossRefGoogle Scholar
  10. Hu, J., and A. M. Duan, 2015: Relative contributions of the Tibetan Plateau thermal forcing and the Indian Ocean sea surface temperature basin mode to the interannual variability of the East Asian summer monsoon. Climate Dyn., 45, 2697–2711, https://doi.org/10.1007/s00382-015-2503-7. CrossRefGoogle Scholar
  11. Huang, G., X. Qu, and K. M. Hu, 2011: The impact of the tropical Indian Ocean on South Asian high in boreal summer. Adv. Atmos. Sci., 28, 421–432, https://doi.org/10.1007/s00376-010-9224-y. CrossRefGoogle Scholar
  12. Huang, R. H., 1985: The influence of the heat source anomaly over Tibetan Plateau on the northern hemispheric circulation anomalies. Acta Meteorologica Sinica, 43, 208–220, https://doi.org/10.11676/qxxb1985.026. (in Chinese)Google Scholar
  13. Jin, R., L. Qi, and J. H. He, 2016: Effect of oceans to spring surface sensible heat flux over Tibetan Plateau and its influence to East China precipitation. Acta Oceanologica Sinica, 38, 83–95, https://doi.org/10.3969/j.issn.0253-4193.2016.05.008. (in Chinese)Google Scholar
  14. Joseph, P. V., J. K. Eischeid, and R. J. Pyle, 1994: Interannual variability of the onset of the Indian summer monsoon and its association with atmospheric features, El Niño, and sea surface temperature anomalies. J. Climate, 7, 81–105, https://doi.org/10.1175/1520-0442(1994)007<0081:IVOTOO>2.0.CO;2.CrossRefGoogle Scholar
  15. Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.CrossRefGoogle Scholar
  16. Lee, J. Y., B. Wang, K. H. Seo, K. J. Ha, A. Kitoh, and J. Liu, 2015: Effects of mountain uplift on global monsoon precipitation. Asia-Pacific Journal of Atmospheric Sciences, 51, 275–290, https://doi.org/10.1007/s13143-015-0077-2. CrossRefGoogle Scholar
  17. Li, C. F., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9, 358–375, https://doi.org/10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.CrossRefGoogle Scholar
  18. Li, J., R. C. Yu, and T. J. Zhou, 2008a: Teleconnection between NAO and climate downstream of the Tibetan Plateau. J. Climate, 21, 4680–4690, https://doi.org/10.1175/2008JCLI2053.1. CrossRefGoogle Scholar
  19. Li, J., R. C. Yu, T. J. Zhou, and B. Wang, 2005: Why is there an early spring cooling shift downstream of the Tibetan Plateau? J. Climate, 18, 4660–4668, https://doi.org/10.1175/JCLI3568.1. CrossRefGoogle Scholar
  20. Li, S. L., J. Lu, G. Huang, and K. M. Hu, 2008b: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 6080–6088, https://doi.org/10.1175/2008JCLI2433.1. CrossRefGoogle Scholar
  21. Li, W., G. X. Wu, W. P. Li, and Y. M. Liu, 2001: Thermal adaptation of the large-scale circulation to the summer heating over the Tibetan Plateau. Progress in Natural Science, 11(3), 207–214.Google Scholar
  22. Liu, B. Q., G. X. Wu, and R. C. Ren, 2015: Influences of ENSO on the vertical coupling of atmospheric circulation during the onset of South Asian summer monsoon. Climate Dyn., 45, 1859–1875, https://doi.org/10.1007/s00382-014-2439-3. CrossRefGoogle Scholar
  23. Liu, S. F., and A. M. Duan, 2017: Impacts of the leading modes of tropical Indian Ocean sea surface temperature anomaly on sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer. J. Meteorol. Res., 31, 171–186, https://doi.org/10.1007/s13351-016-6093-z. CrossRefGoogle Scholar
  24. Liu, X. D., and Z. Y. Yin, 2001: Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation. J. Climate, 14, 2896–2909, https://doi.org/10.1175/1520-0442(2001)014<2896:SATVOS>2.0.CO;2.CrossRefGoogle Scholar
  25. Luo, H. B., and M. Yanai, 1983: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematic analyses. Mon. Wea. Rev., 111, 922–944, https://doi.org/10.1175/1520-0493(1983)111<0922:TLSCAH>2.0.CO;2.Google Scholar
  26. Luo, H. B., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966–989, https://doi.org/10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.Google Scholar
  27. Mao, J., and G. Wu, 2007: Interannual variability in the onset of the summer monsoon over the Eastern Bay of Bengal. Theor. Appl. Climatol., 89, 155–170, https://doi.org/10.1007/s00704-006-0265-1. CrossRefGoogle Scholar
  28. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670. CrossRefGoogle Scholar
  29. Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1. CrossRefGoogle Scholar
  30. Torres, M. E., M. A. Colominas, G. Schlotthauer, and P. Flandrin, 2011: A complete ensemble empirical mode decomposition with adaptive noise. Proceedings of 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, IEEE, 4144–4147, https://doi.org/10.1109/ICASSP.2011.5947265. CrossRefGoogle Scholar
  31. Wan, R. J., and G. X. Wu, 2007: Mechanism of the Spring Persistent Rains over southeastern China. Science in China Series D: Earth Sciences, 50, 130–144, https://doi.org/10.1007/s11430-007-2069-2. CrossRefGoogle Scholar
  32. Wang, B., and L. Ho, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386–398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.CrossRefGoogle Scholar
  33. Wang, M. R., S. W. Zhou, and A. M. Duan, 2012: Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades: Comparison of observations and reanalysis data. Chinese Science Bulletin, 57, 548–557, https://doi.org/10.1007/s11434-011-4838-8. CrossRefGoogle Scholar
  34. Wang, Z. Q., A. M. Duan, and G. X. Wu, 2014: Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: Case studies using the WRF model. Climate Dyn., 42, 2885–2898, https://doi.org/10.1007/s00382-013-1800-2. CrossRefGoogle Scholar
  35. Wu, G. X., and H. Z. Liu, 1992: Atmospheric precipitation in response to equatorial and tropical sea surface temperature anomalies. J. Atmos. Sci., 49, 2236–2255, https://doi.org/10.1175/1520-0469(1992)049<2236:APIRTE>2.0.CO;2.CrossRefGoogle Scholar
  36. Wu, G. X., and H. Z. Liu, 1995: Neighbourhood response of rainfall to tropical sea surface temperature anomalies. Part I: Numerical experiment. Scientia Atmospherica Sinica, 19, 422–434, https://doi.org/10.3878/j.issn.1006-9895.1995.04.05. (in Chinese)Google Scholar
  37. Wu, G. X., and B. Q. Liu, 2014: Roles of forced and inertially unstable convection development in the onset process of Indian summer monsoon. Science China Earth Sciences, 57, 1438–1451, https://doi.org/10.1007/s11430-014-4865-9. CrossRefGoogle Scholar
  38. Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F. F. Jin, 2011: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, https://doi.org/10.1038/srep00404. CrossRefGoogle Scholar
  39. Wu, G. X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 8, 770–789, https://doi.org/10.1175/JHM609.1. CrossRefGoogle Scholar
  40. Wu, G. X., and Coauthors, 2015: Tibetan Plateau climate dynamics: recent research progress and outlook. National Science Review, 2, 100–116, https://doi.org/10.1093/nsr/nwu045. CrossRefGoogle Scholar
  41. Wu, R. G., and S. W. Yeh, 2010: A further study of the tropical Indian Ocean asymmetric mode in boreal spring. J. Geophys. Res., 115, https://doi.org/10.1029/2009JD012999.
  42. Wu, Y., Y. Q. Li, X. W. Jiang, and Y. C. Dong, 2017: Parameters sensitivity analysis on simulation of rainfall in drought-flood year on Qinghai-Tibetan Plateau by WRF model. Plateau Meteorology, 36(3), 619–631, https://doi.org/10.7522/j.issn.1000-0534.2016.00057. (in Chinese)Google Scholar
  43. Wu, Z. H., E. K. Schneider, B. P. Kirtman, E. S. Sarachik, N. E. Huang, and C. J. Tucker, 2008: The modulated annual cycle: An alternative reference frame for climate anomalies. Climate Dyn., 31, 823–841, https://doi.org/10.1007/s00382-008-0437-z. CrossRefGoogle Scholar
  44. Wu, Z. W., W. Bin, J. P. Li, and F. F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, https://doi.org/10.1029/2009JD011733.
  45. Xie, S.-P., Y. Kosaka, Y. Du, K. M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411–432, https://doi.org/10.1007/s00376-015-5192-6. CrossRefGoogle Scholar
  46. Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, https://doi.org/10.1175/2008JCLI2544.1. CrossRefGoogle Scholar
  47. Yanai, M., and C. F. Li, 1994: Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea. Rev., 122, 305–323, https://doi.org/10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2.CrossRefGoogle Scholar
  48. Yang, J. L., Q. Y. Liu, S. P. Xie, Z. Y. Liu, and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, https://doi.org/10.1029/2006GL028571.
  49. Ye, D. Z., and Y.-X. Gao, 1979: The Meteorology of the Qinghai-Xizang (Tibet) Plateau. Science Press, Beijing, 278 pp. (in Chinese)Google Scholar
  50. Yeh, T. C., 1950: The circulation of the high troposphere over China in the winter of 1945–46. Tellus, 2, 173–183, https://doi.org/10.1111/j.2153-3490.1950.tb00329.x. CrossRefGoogle Scholar
  51. Yu, H. Y., Q. Bao, L. J. Zhou, X. C. Wang, and Y. M. Liu, 2014: Sensitivity of precipitation in aqua-planet experiments with an AGCM. Atmos. Oceanic Sci. Lett., 7, 1–6, https://doi.org/10.1080/16742834.2014.11447126. CrossRefGoogle Scholar
  52. Zhang, R. H., and A. Sumi, 2002: Moisture circulation over East Asia during El Niño episode in northern winter, spring and autumn. J. Meteor. Soc. Japan, 80, 213–227, https://doi.org/10.2151/jmsj.80.213. CrossRefGoogle Scholar
  53. Zhao, P., and L. X. Chen, 2001: Interannual variability of atmospheric heat source/sink over the Qinghai–Xizang (Tibetan) Plateau and its relation to circulation. Adv. Atmos. Sci., 18, 106–116, https://doi.org/10.1007/s00376-001-0007-3. CrossRefGoogle Scholar
  54. Zhao, Y. F., and J. Zhu, 2015: Assessing quality of grid daily precipitation datasets in China in recent 50 years. Plateau Meteorology, 34, 50–58, https://doi.org/10.7522/j.issn.1000-0534.2013.00141. (in Chinese)Google Scholar
  55. Zhao, Y. F., J. Zhu, and Y. Xu, 2014: Establishment and assessment of the grid precipitation datasets in China for recent 50 years. Journal of the Meteorological Sciences, 34, 414–420, https://doi.org/10.3969/2013jms.0008. (in Chinese)Google Scholar
  56. Zhou, L. J., Y. M. Liu, Q. Bao, H. Y. Yu, and G. X. Wu, 2012: Computational performance of the high-resolution atmospheric model FAMIL. Atmos. Oceanic Sci. Lett., 5, 355–359, https://doi.org/10.1080/16742834.2012.11447024. CrossRefGoogle Scholar
  57. Zhou, L. J., and Coauthors, 2015: Global energy and water balance: Characteristics from Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1). Journal of Advances in Modeling Earth Systems, 7, 1–20, https://doi.org/10.1002/2014MS000349. CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations