Skip to main content
Log in

Simulating Eastern- and Central-Pacific Type ENSO Using a Simple Coupled Model

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Severe biases exist in state-of-the-art general circulation models (GCMs) in capturing realistic central-Pacific (CP) El Niño structures. At the same time, many observational analyses have emphasized that thermocline (TH) feedback and zonal advective (ZA) feedback play dominant roles in the development of eastern-Pacific (EP) and CP El Niño–Southern Oscillation (ENSO), respectively. In this work, a simple linear air–sea coupled model, which can accurately depict the strength distribution of the TH and ZA feedbacks in the equatorial Pacific, is used to investigate these two types of El Niño. The results indicate that the model can reproduce the main characteristics of CP ENSO if the TH feedback is switched off and the ZA feedback is retained as the only positive feedback, confirming the dominant role played by ZA feedback in the development of CP ENSO. Further experiments indicate that, through a simple nonlinear control approach, many ENSO characteristics, including the existence of both CP and EP El Niño and the asymmetries between El Niño and La Niña, can be successfully captured using the simple linear air–sea coupled model. These analyses indicate that an accurate depiction of the climatological sea surface temperature distribution and the related ZA feedback, which are the subject of severe biases in GCMs, is very important in simulating a realistic CP El Niño.

摘 要

现今的环流模式(GCMs)在模拟中部型El Niño时存在严重的偏差. 与此同时, 很多基于观测的分析指出温跃层反馈和纬向平流反馈分别对东部型和中部型El Niño–Southern Oscillation (ENSO)起着主导作用. 本文利用一个简单的海气耦合模式对两类El Niño进行了研究. 基于观测信息, 该模式能够准确给出温跃层反馈和纬向平流反馈的强度沿赤道太平洋的分布. 研究结果表明, 当关闭模式中的温跃层反馈而仅保留纬向平流反馈项时, 模式能够模拟出中部型ENSO的主要特征. 这验证了纬向平流反馈对中部型ENSO的支配作用. 接着, 通过在模式中引入一个简单的非线性调控项, 很多ENSO特征都能被这一简单的海气耦合模式抓住, 包括同时产生两类El Niño以及El Niño与La Niña的非对称性. 该模式分析表明, 若要模拟出接近真实的中部型El Niño, 海表温度的气候态分布及其相联系的纬向平流反馈必须足够准确. 而这恰恰是如今环流模式存在的严重偏差之一.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys Res., 112, C11007, https://doi.org/10.1029/2006 JC003798.

    Article  Google Scholar 

  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. H. Li, and D. G. Dewitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631–651, https://doi.org/10.1175/BAMS-D-11-00111.1.

    Article  Google Scholar 

  • Behringer, D., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Washington State Convention and Trade Center, Amer. Meteor. Soc., 2. 3. [Available online at http://ams.confex.com/ams/pdfpapers/70720.pdf.]

    Google Scholar 

  • Burgers, G., and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26, 1027–1030, https://doi.org/10.1029/1999GL900161.

    Article  Google Scholar 

  • Burgers, G., and G. J. Van Oldenborgh, 2003: On the impact of local feedbacks in the central Pacific on the ENSO cycle. J. Climate, 16, 2396–2407, https://doi.org/10.1175/2766.1.

    Article  Google Scholar 

  • Burgers, G., M. A. Balmaseda, F. C. Vossepoel, G. J. Van Oldenborgh, and P. J. Van Leeuwen, 2002: Balanced ocean-data assimilation near the equator. J. Phys. Oceanogr., 32, 2509–2519, https://doi.org/10.1175/1520-0485-32.9.2509.

    Article  Google Scholar 

  • Chen, D. K., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. J. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733–736, https://doi.org/10.1038/nature02439.

    Article  Google Scholar 

  • Fang, X.-H., and F. Zheng, 2014: Effect of decadal changes in air-sea interaction on the climate mean state over the tropical Pacific. Atmos. Oceanic Sci. Lett., 7, 400–405, https://doi.org/10.3878/j.issn.1674-2834.14.0019.

    Article  Google Scholar 

  • Fang, X.-H., F. Zheng, and J. Zhu, 2015: The cloud-radiative effect when simulating strength asymmetry in two types of El Niño events using CMIP5 models. J. Geophys. Res., 120, 4357–4369, https://doi.org/10.1002/2014JC010683.

    Article  Google Scholar 

  • Feng, J., and J. P. Li, 2011: Influence of El Niño Modoki on spring rainfall over south China. J. Geophys. Res., 116, D13102, https://doi.org/10.1029/2010JD015160.

    Article  Google Scholar 

  • Fu, C. B., and J. Fletcher, 1985: Two patterns of equatorial warming associated with El Niño. Science Bulletin, 30, 1360–1364.

    Google Scholar 

  • Ham, Y. G., J. S. Kug, J. Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geoscience, 6, 112–116, https://doi.org/10.1038/ngeo1686.

    Article  Google Scholar 

  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829, https://doi.org/10.1175/1520-0469(1997)054<0811: AEORPF>2.0.CO;2.

    Google Scholar 

  • Jin, F.-F., S. I. An, A. Timmermann, and J. X. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, https://doi.org/10.1029/2002GL016356.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DEO AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, https://doi.org/10.1175/BAMS-83-11-1631.

    Article  Google Scholar 

  • Kao, H. Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632, https://doi.org/10.1175/2008JCLI2309.1.

    Article  Google Scholar 

  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 77–80, https://doi.org/10.1126/science. 1174062.

    Article  Google Scholar 

  • Kirtman, B. P., and P. S. Schopf, 1998: Decadal Variability in ENSO Predictability and Prediction. J. Climate, 11, 2804–2822, https://doi.org/10.1175/1520-0442(1998)011 <2804:DVIEPA>2.0.CO;2.

    Article  Google Scholar 

  • Kleeman, R., 1993: On the dependence of hindcast skill on ocean thermodynamics in a coupled ocean-atmosphere model. J. Climate, 6, 2012–2033, https://doi.org/10.1175/1520-0442 (1993)006<2012:OTDOHS>2.0.CO;2.

    Article  Google Scholar 

  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515, https://doi.org/10.1175/2008JCLI2624. 1.

    Article  Google Scholar 

  • Kumar, K. K., B. Rajagopalan, M. Hoerling, G. Bates, and M. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115–119, https://doi.org/10.1126/science.1131152.

    Article  Google Scholar 

  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, https://doi.org/10.1029/2005GL022860.

    Article  Google Scholar 

  • Latif, M., 1987: Tropical ocean circulation experiments. J. Phys. Oceanogr., 17, 246–263, https://doi.org/10.1175/1520-0485 (1987)017<0246:TOCE>2.0.CO;2.

    Article  Google Scholar 

  • Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophy. Res., 103, 14 375–14 393, https://doi.org/10.1029/97JC03413.

    Article  Google Scholar 

  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, https://doi.org/10.1029/2010GL044007.

    Google Scholar 

  • Philip, S. Y., and G. J. V. Van Oldenborgh, 2010: Atmospheric properties of ENSO: Models versus observations. Climate Dyn., 34, 1073–1091, https://doi.org/10.1007/s00382-009-0579-7.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296, https://doi.org/10.1175/2007JCLI2100.1.

    Article  Google Scholar 

  • Su, J. Z., R. H. Zhang, T. Li, X. Y. Rong, J.-S. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605–617, https://doi.org/10.1175/2009JCLI2894.1.

    Article  Google Scholar 

  • Sun, D. Z., and T. Zhang, 2006: A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys. Res. Lett., 33, L07710, https://doi.org/10.1029/2005GL025296.

    Article  Google Scholar 

  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 3923–3926, https://doi.org/10.1029/2001GL013435.

    Article  Google Scholar 

  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 2668–2675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    Article  Google Scholar 

  • Wang, W. Q., M. Y. Chen, and A. Kumar, 2010: An assessment of the CFS real-time seasonal forecasts. Wea. Forecasting, 25, 950–969, https://doi.org/10.1175/2010WAF2222345.1.

    Article  Google Scholar 

  • Xiang, B. Q., B. Wang, and T. Li, 2013: A new paradigm for the predominance of stand ing Central Pacific Warming after the late 1990s. Climate Dyn., 41, 327–340, https://doi.org/10.1007/s00382-012-1427-8.

    Article  Google Scholar 

  • Xue, Y., M. Y. Chen, A. Kumar, Z.-Z. Hu, and W. Q. Wang, 2013: Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP Climate Forecast System Version 2. J. Climate, 26, 5358–5378, https://doi.org/10.1175/JCLI-D-12-00600.1.

    Article  Google Scholar 

  • Yu, J.-Y., and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res., 112, 125–138, https://doi.org/10.1029/2006JD007654.

    Article  Google Scholar 

  • Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708–720. https://doi.org/10.1175/2010JCLI3688.1.

    Article  Google Scholar 

  • Yu, J.-Y., H.-Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J. Climate, 23, 2869–2884, https://doi.org/10.1175/2010JCLI3171.1.

    Article  Google Scholar 

  • Zhang, W. J., F.-F. Jin, J. P. Li, and H.-L. Ren, 2011: Contrasting impacts of two-type El Niño over the western north Pacific during boreal autumn. J. Meteor. Soc. of Japan, 89, 563–569, https://doi.org/10.2151/jmsj.2011-510.

    Article  Google Scholar 

  • Zhang, W., Q.-L. Chen, and F. Zheng, 2015: Bias corrections of the heat flux damping process to improve the simulation of ENSO post-2000. SOLA, 11, 181–185, https://doi.org/10.2151/sola. 2015-040.

    Article  Google Scholar 

  • Zheng, F., and J.-Y. Yu, 2017: Contrasting the skills and biases of deterministic predictions for the two types of El Niño. Adv. Atmos. Sci., 34(12), 1395–1403, https://doi.org/10.1007/s00376-017-6324-y.

    Article  Google Scholar 

  • Zheng, F., X.-H. Fang, J.-Y. Yu, and J. Zhu, 2014: Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys. Res. Lett., 41, 7651–7657, https://doi.org/10.1002/2014GL062125.

    Article  Google Scholar 

  • Zheng, F., W. Zhang, J.-Y. Yu, and Q.-L. Chen, 2015: A possible bias of simulating the post-2000 changing ENSO. Science Bulletin, 60(21), 1850–1857, https://doi.org/10.1007/s11434-015-0912-y.

    Article  Google Scholar 

  • Zheng, F., X.-H. Fang, J. Zhu, J.-Y. Yu, and X.-C. Li, 2016: Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophys. Res. Lett., 43, 12 560–12 568, https://doi.org/10.1002/2016GL071636.

    Article  Google Scholar 

  • Zhu, J., G. Zhou, R.-H. Zhang, and Z. Sun, 2011: On the role of oceanic entrainment temperature (Te) in decadal changes of El Niño/Southern Oscillation. Annales Geophysicae, 29(3), 529–540, https://doi.org/10.5194/angeo-29-529-2011.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the two anonymous reviewers for their very helpful comments and suggestions. This work was supported by a project funded by the China Postdoctoral Science Foundation (Grant No. 2017M610225), and the National Natural Science Foundation of China (Grant No. 41576019). The author is grateful to Mu MU for his support and comments on the manuscript. The monthly ocean temperature and oceanic circulation data were obtained from http://www.cpc.ncep.noaa.gov/products/GODAS/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghui Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Zheng, F. Simulating Eastern- and Central-Pacific Type ENSO Using a Simple Coupled Model. Adv. Atmos. Sci. 35, 671–681 (2018). https://doi.org/10.1007/s00376-017-7209-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7209-9

Key words

关键词

Navigation