Advances in Atmospheric Sciences

, Volume 35, Issue 7, pp 868–880 | Cite as

Persistence of Summer Sea Surface Temperature Anomalies in the Midlatitude North Pacific and Its Interdecadal Variability

  • Xia Zhao
  • Guang Yang
  • Jing Wang
Original Paper


The present study investigates the persistence of summer sea surface temperature anomalies (SSTAs) in the midlatitude North Pacific and its interdecadal variability. Summer SSTAs can persist for a long time (approximately 8–14 months) around the Kuroshio Extension (KE) region. This long persistence may be strongly related to atmospheric forcing because the mixed layer is too shallow in the summer to be influenced by the anomalies at depths in the ocean. Changes in atmospheric circulation, latent heat flux, and longwave radiation flux all contribute to the long persistence of summer SSTAs. Among these factors, the longwave radiation flux has a dominant influence. The effects of sensible heat flux and shortwave radiation flux anomalies are not significant. The persistence of summer SSTAs displays pronounced interdecadal variability around the KE region, and the variability is very weak during 1950–82 but becomes stronger during 1983–2016. The changes in atmospheric circulation, latent heat flux, and longwave radiation flux are also responsible for this interdecadal variability because their forcings on the summer SSTAs are sustained for much longer after 1982.

Key words

SSTAs persistence summertime Kuroshio Extension cloud feedback interdecadal variability 


大尺度海温的持续性可以影响大气环流和天气的变化. 海表温度异常(SSTAs)的持续性具有很强的季节依赖. 对于北太平洋, 人们已经对冬季SSTAs的持续性进行了较为全面的研究, 取得了一致的结论. 但是, 对夏季SSTAs的持续性特征及机制的研究却存在相互矛盾的观点. 前人主要是针对人为选取区域的SSTAs或是某一海域SSTAs主模态的持续性进行研究, 而这两种方法会对结果产生不确定性影响. 因此, 本文对每个空间格点SSTAs的持续性都进行了分析和计算, 从而明确给出了中纬度北太平洋夏季SSTAs持续性的空间分布, 并对其物理机制及年代际变化进行了分析讨论. 结果表明, 中纬度北太平洋夏季SSTAs可以持续较长的时间, 黑潮延伸体区域的持续时间可以达到8-14个月. 因为夏季中高纬度海洋混合层太浅这使得表层海温很难受到深层海洋变化的影响, 所以黑潮延伸体区域SSTAs较长的持续性主要与局地大气强迫密切相关. 大气环流, 潜热, 长波辐射通量的变化都对SSTAs较长的持续性有所贡献, 其中, 长波辐射通量是主要因子. 而潜热通量和短波热射通量的影响并不显著. 黑潮延伸体区域夏季SSTAs的持续性还存在显著的年代际变化, 其持续性在1950–82很弱, 而在1983-2016显著增强. 大气环流, 潜热, 长波辐射通量的变化仍然是影响这一年代际变化的主要因素, 三者对SSTAs的强迫作用在1982年以后显著增强.


SSTAs的持续性 夏季 黑潮延伸体 云反馈 年代际变化 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 41375094 and 41406028), the Basic Scientific Research Fund for National Public Institutes of China (Grant No. GY0215P04), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010102), the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401), and the Foundation for Innovative Research Groups of the NSFC (Grant No. 41421005).


  1. Achuthavarier, D., S. D. Schubert, and Y. V. Vikhliaev, 2017: North Pacific decadal variability: Insights from a biennial ENSO environment. Climate Dyn., 49, 1379–1397, CrossRefGoogle Scholar
  2. Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122–137,<0122:AMFTRO>2.0.CO;2.CrossRefGoogle Scholar
  3. Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12, 2419–2433.CrossRefGoogle Scholar
  4. Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231,<2205:TABTIO>2. 0.CO;2.CrossRefGoogle Scholar
  5. Chen, D., H. J. Wang, Y. Song, and Y. Gao, 2016: A multidecadal oscillation in the northeastern Pacific. Atmospheric and Oceanic Science Letters, 9(4), 315–326, CrossRefGoogle Scholar
  6. Davis, R. E., 1978: Predictability of sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 8, 233–246,<0233: POSLPA>2.0.CO;2.CrossRefGoogle Scholar
  7. Ding, R. Q., and J. P. Li, 2009: Decadal and seasonal dependence of North Pacific sea surface temperature persistence. J. Geophys. Res., 114, D01105, Google Scholar
  8. Deser, C., and M. S. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393–408.CrossRefGoogle Scholar
  9. Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 57–72,<0057:UTPOSS>2.0.CO;2.CrossRefGoogle Scholar
  10. Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289–305, CrossRefGoogle Scholar
  11. Frankignoul, C., and N. Sennéchael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592–606, CrossRefGoogle Scholar
  12. Hanawa, K., and S. Sugimoto, 2004: ‘Reemergence’ areas of winter sea surface temperature anomalies in the world’s oceans. Geophys. Res. Lett., 31, L10303, CrossRefGoogle Scholar
  13. Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, CrossRefGoogle Scholar
  14. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471,<0437: TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  15. Lau, K.-M., K.-M. Kim, and S. S. P. Chen, 2002: Potential predictability of seasonal precipitation over the United States from canonical ensemble correlation predictions. Geophys. Res. Lett., 29, 1-1–1-4, CrossRefGoogle Scholar
  16. Liu, Z. Y., and L. X. Wu, 2004: Atmospheric response to North Pacific SST: The role of ocean–atmosphere coupling. J. Climate, 17, 1859–1882, (2004)017<1859:ARTNPS>2.0.CO;2.CrossRefGoogle Scholar
  17. Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 35–44, CrossRefGoogle Scholar
  18. Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1079, 078<1069:APICOW>2.0.CO;2.CrossRefGoogle Scholar
  19. Miller, A. J., and N. Schneider, 2000: Interdecadal climate regime dynamics in the North Pacific Ocean: Theories, observations and ecosystem impacts. Progress in Oceanography, 47, 355–379, CrossRefGoogle Scholar
  20. Monterey, G. I., and S. Levitus, 1997: Seasonal Variability of Mixed Layer Depth for the World Ocean. NOAA NESDIS,92 pp.Google Scholar
  21. Namias, J., and R. M. Born, 1970: Temporal coherence in North Pacific sea-surface temperature patterns. J. Geophys. Res., 75, 5952–5955, CrossRefGoogle Scholar
  22. Namias, J., and R. M. Born, 1974: Further studies of temporal coherence in North Pacific sea surface temperatures. J. Geophys. Res., 79, 797–798, CrossRefGoogle Scholar
  23. Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 4399–4427, CrossRefGoogle Scholar
  24. Nonaka, M., and S.-P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback. J. Climate, 16, 1404–1413, 16<1404:COSSTA>2.0.CO;2.CrossRefGoogle Scholar
  25. Norris, J. R., Y. Zhang, and J. M. Wallace, 1998: Role of clouds in summertime atmosphere-ocean interactions over the North Pacific. J. Climate, 11, 2482–2490.CrossRefGoogle Scholar
  26. Qiu, B., 2000: Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field. J. Phys. Oceanogr., 30, 1486–1502,<1486:IVOTKE>2.0.CO;2.CrossRefGoogle Scholar
  27. Sugimoto, S., and K. Hanawa, 2005: Remote reemergence areas of winter sea surface temperature anomalies in the North Pacific. Geophys. Res. Lett., 32, L01606, Google Scholar
  28. Tomita, T., S.-P. Xie, and M. Nonaka, 2002: Estimates of surface and subsurface forcing for decadal sea surface temperature variability in the mid-latitude North Pacific. J. Meteor. Soc. Japan, 80, 1289–1300.CrossRefGoogle Scholar
  29. Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmospheric–ocean variations in the Pacific. Climate Dyn., 9, 303–319, CrossRefGoogle Scholar
  30. Wallace, J. M., Y. Zhang, and K.-H. Lau, 1993: Structure and seasonality of interannual and interdecadal variability of the geopotential height and temperature fields in the Northern Hemisphere troposphere. J. Climate, 6, 2063–2082, <2063:SASOIA>2.0.CO;2.CrossRefGoogle Scholar
  31. Wu, R. G., and J. L. Kinter III, 2010: Atmosphere-ocean relationship in the midlatitude North Pacific: Seasonal dependence and east-west contrast. J. Geophys. Res., 115, D06101, Google Scholar
  32. Xiao, D., and J. P. Li, 2007: Spatial and temporal characteristics of the decadal abrupt changes of global atmosphere-ocean system in the 1970s. J. Geophys. Res., 112, D24S22, CrossRefGoogle Scholar
  33. Xie, S. P., T. Kunitani, A. Kubokawa, M. Nonaka, and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958–97: A GCM simulation. J. Phys. Oceanogr., 30, 2798–2813,<2798:ITVITN>2.0.CO;2.CrossRefGoogle Scholar
  34. Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSOlike interdecadal variability: 1900–93. J. Climate, 10, 1004–1020,;1004: ELIV&gt;2.0.CO;2.CrossRefGoogle Scholar
  35. Zhang, R.-H., L. M. Rothstein, and A. J. Busalacchi, 1998: Origin of upper-ocean warming and El Ni˜no change on decadal scales in the tropical Pacific Ocean. Nature, 391, 879–883, CrossRefGoogle Scholar
  36. Zhao, X., and J. P. Li, 2010: Winter-to-winter recurrence of sea surface temperature anomalies in the Northern Hemisphere. J. Climate, 23, 3835–3854, JCLI2583.1.CrossRefGoogle Scholar
  37. Zhao, X., and J. P. Li, 2012a: Winter-to-winter recurrence and nonwinter-to-winter recurrence of SST anomalies in the central North Pacific. J. Geophys. Res., 117, C05027, Google Scholar
  38. Zhao, X., and J. P. Li, 2012b: Winter-to-winter recurrence of atmospheric circulation anomalies in the central North Pacific. J. Geophys. Res., 117, C12023, JC008248.Google Scholar
  39. Zhao, X, J. P. Li, and W. J. Zhang, 2012: Summer persistence barrier of sea surface temperature anomalies in the central western north pacific. Adv. Atmos. Sci., 29, 1159–1173, CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Ocean Circulation and Waves, Institute of OceanologyChinese Academy of Sciences and Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  2. 2.Center for Ocean and Climate Research, First Institute of OceanographyState Oceanic AdministrationQingdaoChina
  3. 3.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations