Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 7, pp 826–838 | Cite as

Regional Characteristics of Typhoon-Induced Ocean Eddies in the East China Sea

  • Jianhong Wang
  • Meiqi Li
  • X. San Liang
  • Xing Wang
  • Feng Xue
  • Mo Peng
  • Chunsheng Miao
Original Paper
  • 41 Downloads

Abstract

The asymmetrical structure of typhoon-induced ocean eddies (TIOEs) in the East China Sea (including the Yellow Sea) and the accompanying air–sea interaction are studied using reanalysis products. Thirteen TIOEs are analyzed and divided into three groups with the k-prototype method: Group A with typhoons passing through the central Yellow Sea; Group B with typhoons re-entering the sea from the western Yellow Sea after landing on continental China; and Group C with typhoons occurring across the eastern Yellow Sea near to the Korean Peninsula. The study region is divided into three zones (Zones I, II and III) according to water depth and the Kuroshio position. The TIOEs in Group A are the strongest and could reverse part of the Kuroshio stream, while TIOEs in the other two groups are easily deformed by topography. The strong currents of the TIOEs impact on the latent heat flux distribution and upward transport, which facilitates the typhoon development. The strong divergence within the TIOEs favors an upwelling-induced cooling. A typical TIOE analysis shows that the intensity of the upwelling of TIOEs is proportional to the water depth, but its magnitude is weaker than the upwelling induced by the topography. In Zones I and II, the vertical dimensions of TIOEs and their strong currents are much less than the water depths. In shallow water Zone III, a reversed circulation appears in the lower layer. The strong currents can lead to a greater, faster, and deeper energy transfer downwards than at the center of TIOEs.

Key words

typhoon-induced ocean eddies East China Sea asymmetrical dynamic structure kinetic energy transfer and evolution 

摘要

运用再分析资料对2005-2015年间发生在东中国海上由台风引致的海洋涡旋(TIOEs)及其伴随的海气相互作用进行了深入分析. TIOEs是一种具有非对称结构的海上中尺度涡旋, 采用k氏样本分类方法将13个影响东中国海的台风及其引致的海洋涡旋依据路径分为A, B, C三类. A类台风路径沿黄海中线北上, B类台风自登陆中国后从黄海西岸再次入海, C类台风路径偏黄海东部, 接近朝鲜半岛. 进一步地依据东中国海的水深和黑潮的位置, 研究区域也被分成三个: I, II, III. I区为黑潮以南的东海深水海域, II区为黑潮以北, 黄海以南的海域, III区为水深较浅的黄海海域. 在各组TIOEs中, A组的TIOEs最强, 能够部分地反转黑潮海流. 而另两组的TIOEs则很容易受沿海地形影响而变形. TIOEs的强海流部分影响着海气界面的潜热通量分布和向上传输, 进而影响台风的发展. 在TIOEs中的强辐散区有利于其下方的上升流和冷海温的增强及上传. 对一个典型的TIOE分析显示, TIOE中上升流的强度正比于海域的水深, 但是强度量值弱于由地形强迫的上升流. 在I区和II区, TIOE自身和其强流区的垂直尺度是显著地小于海域水深, 而在浅水III区的底层会出现一个反向环流. 与TIOE的中心区域相比较, 其强流区能够导致更强更快更深的能量向下传输.

关键词

台风引致的海洋涡旋 东中国海域 非对称动力结构 动能传输与演变 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Thanks are extended to the China Meteorological Administration (http://tcdata.typhoon.gov.cn), NCEP (http://rda.ucar.edu/datasets/ds093.1/, http://rda.ucar.edu/datasets/ds094.1/), and theHYCOMConsortium (http://hycom.org/dataserver/), for providing the datasets. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41276033 and 41276032), the Jiangsu Science and Technology Support Project (Grant No. BE2014729), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. the 2015 Jiangsu Program for Innovation Research and Entrepreneurship Groups, and the National Program on Global Change and Air-Sea Interaction (GASI-IPOVAI-06).

References

  1. An, Y. Z, Y. L. Wang, and R. Zhang, 2014: Upper ocean temperature and salinity structure response to typhoon. Second Symposium on Disaster Risk Analysis and Management in Chinese Littoral Regions, China Disaster Defense Association risk analysis Specialized Committee, Haikou, 44–48. (in Chinese with English abstract)Google Scholar
  2. Black, P. G., 1983: temperature changes induced by tropical cyclones. PhD. dissertation, The Ocean Pennsylvania State University, 1487 pp.Google Scholar
  3. Chen, D. K., X. T. Lei, W. Wang, G. H. Wang, G. J. Han, and L. Zhou, 2013: Upper ocean response and feedback mechanisms to typhoon. Advances in Earth Science, 28(10), 1077–1086, https://doi.org/10.11867/j.issn.1001-8166.2013.10.1077. (in Chinese with English abstract)Google Scholar
  4. Domingues, R., and Coauthors, 2015: Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations. Geophys. Res. Lett., 42(17), 7131–7138, https://doi.org/10.1002/2015GL065378. CrossRefGoogle Scholar
  5. Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665–669, https://doi.org/10.1038/44326. CrossRefGoogle Scholar
  6. Gawarkiewicz, G., and Coauthors, 2011: Circulation and intrusions northeast of Taiwan: Chasing and predicting uncertainty in the cold dome. Oceanography, 24(4), 110–121, https://doi.org/10.5670/oceanog.2011.99. CrossRefGoogle Scholar
  7. Huang, Z. X., 1997: A fast clustering algorithm to cluster very large categorical data sets in data mining. Proceedings of the SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Arizona, ACM Press, 1–8.Google Scholar
  8. Jiang, D., F. Huang, G. H. Hao, and W. H. Lv, 2012: The characteristics of air-sea heat flux exchange during the generation and development of the local typhoon over the south China sea. Journal of Tropical Meteorology, 28(6), 888–896, https://doi.org/10.3969/j.issn.1004-4965.2012.06.010. (in Chinese with English abstract)Google Scholar
  9. Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24(2), 182–186, https://doi.org/10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2.CrossRefGoogle Scholar
  10. Li, Y. X., 2015: Typhoons’ effects on ocean cyclonic eddies in the NorthWestern Pacific. M.S. thesis, University of Science and Technology of China. (in Chinese with English abstract)Google Scholar
  11. Lin, P. F., 2005: Statistical analyses on mesoscale eddies in the South China Sea and the Northwest Pacific. M.S. thesis, Institute of Oceanology, University of Chinese Academy of Sciences. (in Chinese with English abstract)Google Scholar
  12. Liu, G. P., and J. Y. Hu, 2009: Response of the mesoscale eddies to tropical cyclones in the South China Sea: A case study. Journal of Oceanography in Taiwan Strait, 28(3), 308–315, https://doi.org/10.3969/j.issn.1000-8160.2009.03.002. (in Chinese with English abstract)Google Scholar
  13. Liu, Z. H., J. P. Xu, C. H. Sun, and X. F. Wu, 2014: An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats. Acta Oceanologica Sinica, 33(11), 90–101, https://doi.org/10.1007/s13131-014-0558-7. CrossRefGoogle Scholar
  14. Liu, Z. H., J. P. Xu, B. K. Zhu, C. K. Sun, and L. F. Zhang, 2007: The upper ocean response to tropical cyclones in the northwestern Pacific analyzed with Argo data. Chinese Journal of Oceanology and Limnology, 25(2), 123–131, https://doi.org/10.1007/s00343-007-0123-8. CrossRefGoogle Scholar
  15. Ma, J., H. M. Xu, and C. M. Dong, 2014: Atmospheric Response to mesoscale oceanic eddies over the Kuroshio extension: Case analyses of warm and cold eddies in winter. Chinese Journal of Atmospheric Sciences, 38(3), 438–452, https://doi. org/10.3878/j.issn.1006-9895.2013.13151. (in Chinese with English abstract)Google Scholar
  16. MacQueen, J., 1967: Some methods for classification and analysis of multivariate observations. Proc. 5th Symposium on Mathematics & Statistical Probability, Berkeley, University of California, 281–296.Google Scholar
  17. Miao, C. S., P. Song, J. H. Wang, and D. Niu, 2015: Comparative study of impact factors of the yellow river cyclones over the Bohai Sea in spring and summer. Meteorological Monthly, 41(9), 1068–1078, https://doi.org/10.7519/j.issn.1000-0526. 2015.08.003. (in Chinese with English abstract)Google Scholar
  18. Monaldo, F. M., T. D. Sikora, S. M. Babin, and R. E. Sterner, 1996: Satellite imagery of sea surface temperature cooling in the wake of Hurricane Edouard (1996). Mon. Wea. Rev., 125(10), 2716–2721, https://doi.org/10.1175/1520-0493(1997)125<2716:SIOSST>2.0.CO;2.CrossRefGoogle Scholar
  19. Nam, S. H., D. J. Kim, and W. M. Moon, 2012: Observed impact of mesoscale circulation on oceanic response to Typhoon Man-Yi (2007). Ocean Dynamics, 62(1), 1–12, https://doi.org/10.1007/s10236-011-0490-8. CrossRefGoogle Scholar
  20. Nencioli, F., C. M. Dong, T. Dickey, L. Washburn, and J. C. McWilliams, 2010: A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California bight. J. Atmos. Oceanic Technol., 27, 564–579, https://doi.org/10.1175/2009JTECHO725.1. CrossRefGoogle Scholar
  21. Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175, https://doi.org/10.1175/1520-0485 (1981)011<0153:UORTAH>2.0.CO;2.CrossRefGoogle Scholar
  22. Qin, D. D., J. H. Wang, Y. Liu, and C. M. Dong, 2015: Eddy analysis in the Eastern China Sea using altimetry data. Frontiers of Earth Science, 9, 709–721, https://doi.org/10.1007/s11707-015-0542-3. CrossRefGoogle Scholar
  23. Rolfson, D. M., and P. J. Smith, 1996: A composite diagnosis of synoptic-scale extratropical cyclone development over the United States. Mon. Wea. Rev., 124(6), 1084–1099, https://doi.org/10.1175/1520-0493(1996)124<1084:ACDOSS>2.0. CO;2.CrossRefGoogle Scholar
  24. Shang, X. D., C. Xu, G. Y. Chen, and S. M. Lian, 2013: Review on mechanical energy of ocean mesoscale eddies and associated energy sources and sinks. Journal of Tropical Oceanography, 32(2), 24–36, https://doi.org/10.3969/j.issn.1009-5470. 2013.02.003. (in Chinese with English abstract)Google Scholar
  25. Shay, L. K., 2010: Air-sea interactions in tropical cyclones. Global Perspectives on Tropical Cyclones, J. C. L. Chan and J. D. Kepert, Eds., World Scientific Publishing Company, 93–131.Google Scholar
  26. Sun, L., Y. X. Li, Y. J. Yang, Q. Y. Wu, X. T. Chen, Q. Y. Li, Y. B. Li, and T. Xian, 2014: Effects of super typhoons on cyclonic ocean eddies in the western North Pacific: A satellite databased evaluation between 2000 and 2008. J. Geophys. Res., 119, 5585–5598, https://doi.org/10.1002/2013JC009575. CrossRefGoogle Scholar
  27. Sun, L., Y. J. Yang, T. Xian, Y. Wang, and Y. F. Fu, 2012: Ocean responses to typhoon Namtheun explored with Argo floats and multiplatform satellites. Atoms.-Ocean, 50(5), 15–26, https://doi.org/10.1080/07055900.2012.742420. CrossRefGoogle Scholar
  28. Tanajura, C. A. S, A. N. Santana, D. Mignac, L. N. Lima, K. Belyaev, and J. P. Xie, 2014: The REMO ocean data assimilation system into HYCOM (RODAS H): General description and preliminary results. Atmospheric And Oceanic Science Letters, 7(5), 464–470, https://doi.org/10.3878/j.issn.1674-2834.14.0011. CrossRefGoogle Scholar
  29. Tsai, Y. L., C. S. Chern, S. Jan, and J. Wang, 2013: Numerical study of cold dome variability induced by typhoon Morakot (2009) off northeastern Taiwan. J. Mar. Res., 71, 109–131, https://doi.org/10.1357/002224013807343434. CrossRefGoogle Scholar
  30. Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847–850, https://doi.org/10.1126/science.288. 5467.847.CrossRefGoogle Scholar
  31. Yang, G., F. Wang, Y. L. Li, and P. F. Lin, 2013: Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures. J. Geophys. Res., 118(4), 1906–1925, https://doi.org/10.1002/jgrc.20164. CrossRefGoogle Scholar
  32. Yang, Y. J., Y. F. Fu, L. Sun, P. Liu, and S. Feng, 2010: Responses of the upper ocean to Typhoon Tingting observed from multiplatform satellites and Argo float. Journal of University of Science and Technology of China, 40(1), 1–7, https://doi.org/10.3969/j.issn.0253-2778.2010.01.001. (in Chinese with English abstract)Google Scholar
  33. Yang, Y. J., T. Xian, L. Sun, Y. F. Fu, and S. P. Xun, 2012: Impacts of sequential typhoons on sea surface temperature and sea surface height in September 2008. Acta Oceanologica Sinica, 34(1), 71–78. (in Chinese with English abstract)Google Scholar
  34. Yin, Y. Q., 2014: A study on the impact of mesoscale eddies on Kuroshio intrusion variations northeast of Taiwan and its underlying mechanism. PhD dissertation, Ocean University of China. (in Chinese with English abstract)Google Scholar
  35. Zhang, X. S., Z. F. Wang, B. Wang, K. J. Wu, G. J. Han, G. J. Han, and W. Li, 2014: A numerical estimation of the impact of Stokes drift on upper ocean temperature. Acta Oceanologica Sinica, 33(7), 48–55, https://doi.org/10.1007/s13131-014-0507-5. CrossRefGoogle Scholar
  36. Zheng, Z. W., C. R. Ho, Q. N. Zheng, Y. T. Lo, N. J. Kuo, and G. Gopalakrishnan, 2010: Effects of preexisting cyclonic eddies on upper ocean responses to Category 5 typhoons in the western North Pacific. J. Geophys. Res., 115, C09013, https://doi.org/10.1029/2009JC005562. Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jianhong Wang
    • 1
    • 2
  • Meiqi Li
    • 1
    • 5
  • X. San Liang
    • 1
    • 2
  • Xing Wang
    • 1
  • Feng Xue
    • 4
  • Mo Peng
    • 3
  • Chunsheng Miao
    • 1
  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/College of Atmospheric ScienceNanjing University of Information Science and TechnologyNanjingChina
  2. 2.School of Marine SciencesNanjing University of Information Science and TechnologyNanjingChina
  3. 3.Jiangsu Tidal Flat Research Center / Jiangsu Ocean Environment Forecast CenterNanjingChina
  4. 4.National Meteorological Center of China Meteorological AdministrationBeijingChina
  5. 5.Hebei Provincial Meteorological Service CenterShijiazhuangChina

Personalised recommendations