Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 7, pp 853–867 | Cite as

ENSO Predictions in an Intermediate Coupled Model Influenced by Removing Initial Condition Errors in Sensitive Areas: A Target Observation Perspective

  • Ling-Jiang Tao
  • Chuan Gao
  • Rong-Hua Zhang
Original Paper

Abstract

Previous studies indicate that ENSO predictions are particularly sensitive to the initial conditions in some key areas (socalled “sensitive areas”). And yet, few studies have quantified improvements in prediction skill in the context of an optimal observing system. In this study, the impact on prediction skill is explored using an intermediate coupled model in which errors in initial conditions formed to make ENSO predictions are removed in certain areas. Based on ideal observing system simulation experiments, the importance of various observational networks on improvement of El Niño prediction skill is examined. The results indicate that the initial states in the central and eastern equatorial Pacific are important to improve El Ni˜no prediction skill effectively. When removing the initial condition errors in the central equatorial Pacific, ENSO prediction errors can be reduced by 25%. Furthermore, combinations of various subregions are considered to demonstrate the efficiency on ENSO prediction skill. Particularly, seasonally varying observational networks are suggested to improve the prediction skill more effectively. For example, in addition to observing in the central equatorial Pacific and its north throughout the year, increasing observations in the eastern equatorial Pacific during April to October is crucially important, which can improve the prediction accuracy by 62%. These results also demonstrate the effectiveness of the conditional nonlinear optimal perturbation approach on detecting sensitive areas for target observations.

Key words

El Niño prediction initial condition errors target observations 

摘要

已有研究表明ENSO预报技巧取决于某一特定区域(也就是所谓的敏感区)内的初始场准确性. 但是, 很少有研究定量分析所设计的最优观测网对预报技巧的改善程度. 本文基于一个中等复杂程度的海气耦合模式, 通过去除不同区域内的初始误差, 探讨了其对预报技巧的影响. 基于理想观测模拟试验, 考察了不同观测网对预报技巧的改善程度. 结果表明, 位于中东太平洋的初始信号对预报技巧影响最大. 当去除位于赤道中太平洋的初始误差, ENSO预报误差下降25%. 同时, 也考察了多个区域加密观测对预报技巧的影响. 特别地, 文中指出随季节变化的观测网能够更有利于ENSO预报技巧提升. 例如除全年在赤道中太平洋及其北部布置观测外, 若在每年的4至10月份继续增加东太平洋的观测, 能够是预报技巧提升62%左右. 以上结果也充分证实了基于条件非线性最优扰动方法确定观测敏感区的有效性.

关键词

ENSO预报 初始场误差 目标观测 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank Profs. Mu MU and Qiang WANG for their insightful comments and constructive suggestions. We also wish to thank the anonymous reviewers for the same. This research was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19060102), the National Natural Science Foundation of China (Grant Nos. 41475101, 41690122, 41690120 and 41421005), the National Programme on Global Change and Air–Sea Interaction Interaction (Grant Nos. GASI-IPOVAI-06 and GASI-IPOVAI-01-01), and the Taishan Scholarship.

References

  1. Aiken, C. M., A. Santoso, S. McGregor, and M. H. England, 2015: Optimal forcing of ENSO either side of the 1970’s climate shift and its implications for predictability. Climate Dyn., 45, 47–65, https://doi.org/10.1007/s00382-014-2300-8. CrossRefGoogle Scholar
  2. Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0. CO;2.Google Scholar
  3. Bishop, C. H., and Z. Toth, 1999: Ensemble Transformation and Adaptive Observations. J. Atmos. Sci., 56, 1748–1765, https://doi.org/10.1175/1520-0469(1999)056<1748:ETAAO> 2.0.CO;2.CrossRefGoogle Scholar
  4. Boschat G., P. Terray, and S. Masson, 2013: Extratropical forcing of ENSO. Geophys. Res. Lett., 40, 1605–1611. https://doi.org/10.1002/grl.50229. CrossRefGoogle Scholar
  5. Chen, D. K., and M. A. Cane, 2008: El Ni˜no prediction and predictability. J. Comput. Phys., 227, 3625–3640, https://doi.org/10.1016/j.jcp.2007.05.014. CrossRefGoogle Scholar
  6. Chen, D. K., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for EI Nino forecasting: Implications for predictability. Science, 269, 1699–1702, https://doi.org/10.1126/science.269.5231.1699. CrossRefGoogle Scholar
  7. Chen, Y.-Q., D. S. Battisti, T. N. Palmer, J. Barsugli, and E. S. Sarachik, 1997: A study of the predictability of tropical Pacific SST in a coupled atmosphere–ocean model using singular vector analysis: The role of the annual cycle and the ENSO cycle. Mon. Wea. Rev., 125, 831–845.CrossRefGoogle Scholar
  8. Cravatte, S., A. Ganachaud, B. Dewitte, and F. Hernandez, 2015: TPOS2020: Tropical Pacific observing system for 2020. Mercator Ocean-Coriolis Quarterly Newsletter, 27–33.Google Scholar
  9. Duan, W. S., and C. Wei, 2013: The ‘spring predictability barrier’ for ENSO predictions and its possible mechanism: Results from a fully coupled model. Int. J. Climatol., 33(5), 1280–1292, https://doi.org/10.1002/joc.3513. CrossRefGoogle Scholar
  10. Duan, W. S., and J. Y. Hu, 2016: The initial errors that induce a significant “spring predictability barrier” for El Ni˜no events and their implications for target observation: results from an earth system model. Climate Dyn., 46, 3599–3615, https://doi.org/10.1007/s00382-015-2789-5. CrossRefGoogle Scholar
  11. Duan, W. S., X. C. Liu, K. Y. Zhu, and M. Mu, 2009: Exploring the initial errors that cause a significant “spring predictability barrier” for El Ni˜no events. J. Geophys. Res., 114, https://doi.org/10.1029/2008JC004925.
  12. Fan, Y., M. R. Allen, D. L. T. Anderson, and M. A. Balmaseda, 2000: How predictability depends on the nature of uncertainty in initial conditions in a coupled model of ENSO. J. Climate, 13, 3298–3313, https://doi.org/10.1175/1520-0442 (2000)013<3298:HPDOTN>2.0.CO;2.CrossRefGoogle Scholar
  13. Feder, T., 2000: Argo begins systematic global probing of the upper oceans. Physics Today, 53, 50–51, https://doi.org/10.1063/1.1292477. Google Scholar
  14. Flügel, M., and P. Chang, 1998: Does the predictability of ENSO depend on the seasonal cycle? J. Atmos. Sci., 55, 3230–3243, https://doi.org/10.1175/1520-0469(1998)055<3230: DTPOED>2.0.CO;2.CrossRefGoogle Scholar
  15. Frauen, C., and D. Dommenget, 2012: Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys. Res. Lett., 39, L02706, https://doi.org/10.1029/2011GL050520. CrossRefGoogle Scholar
  16. Gao, C., and R. H. Zhang, 2017: The roles of atmospheric wind and entrained water temperature (Te) in the second-year cooling of the 2010-12 La Ni˜na event. Climate Dyn., 48, 597–617, https://doi.org/10.1007/s00382-016-3097-4. CrossRefGoogle Scholar
  17. Gao, C., X. R. Wu, and R. H. Zhang, 2016: Testing a fourdimensional variational data assimilation method using an improved intermediate coupled model for ENSO analysis and prediction. Adv. Atmos. Sci., 33, 875–888, https://doi.org/10.1007/s00376-016-5249-1. CrossRefGoogle Scholar
  18. Gao, C., R.-H. Zhang, X. R. Wu, and J. C. Sun, 2017: Idealized experiments for optimizing model parameters using a 4D-Variational method in an intermediate coupled model ofENSO. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-017-7109-z. (in Press)Google Scholar
  19. Hu, J. Y., and W. S. Duan, 2016: Relationship between optimal precursory disturbances and optimally growing initial errors associated with ENSO events: Implications to target observations for ENSO prediction. J. Geophys. Res., 121, 2901–2917, https://doi.org/10.1002/2015JC011386. CrossRefGoogle Scholar
  20. Keenlyside, N., and R. Kleeman, 2002: Annual cycle of equatorial zonal currents in the Pacific. J. Geophys. Res., 107, 8-1–8-13, https://doi.org/10.1029/2000JC000711. CrossRefGoogle Scholar
  21. Keenlyside, N. S., H. Ding, and M. Latif, 2013: Potential of equatorial Atlantic variability to enhance El Ni˜no prediction. Geophys. Res. Lett., 40, 2278–2283, 0.1002/grl.50362.CrossRefGoogle Scholar
  22. King, J. C., 1997: Currents of change: El Ni˜no’s impact on climate and society. Weather, 52, 159–160, https://doi.org/10.1002/j.1477-8696.1997.tb06299.x. CrossRefGoogle Scholar
  23. Kumar, A., H. Wang, Y. Xue, and W. Q. Wang, 2014: How much of monthly subsurface temperature variability in the equatorial Pacific can be recovered by the specification of sea surface temperatures? J. Climate, 27, 1559–1577, https://doi.org/10.1175/JCLI-D-13-00258.1. CrossRefGoogle Scholar
  24. Latif, M., A. Sterl, E. Maier-Reimer, and M. M. Junge, 1993a: Climate variability in a coupled GCM. Part I: The tropical Pacific. J. Climate, 6, 5–21, https://doi.org/10.1175/1520-0442 (1993)006<0005:CVIACG>2.0.CO;2.Google Scholar
  25. Latif, M., A. Sterl, E. Maier-Reimer, and M. M. Junge, 1993b: Structure and predictability of the El-Ni˜no/southern oscillation phenomenon in a coupled ocean-atmosphere general circulation model. J. Climate, 6, 700–708, https://doi.org/10.1175/1520-0442(1993)006<0700:SAPOTE>2.0.CO;2.CrossRefGoogle Scholar
  26. Lee, P., and Coauthors, 2016: Observing system simulation experiments (OSSEs) using a regional air quality application for evaluation. Air Pollution Modeling and its Application XXIV, D. G. Steyn and N. Chaumerliac, Eds., Springer, 599–605, https://doi.org/10.1007/978-3-319-24478-5 97.CrossRefGoogle Scholar
  27. Lord, S. J., E. Kalnay, R. Daley, G. D. Emmitt, and R. Atlas, 1997: Using OSSEs in the design of the future generation of integrated observing systems. Proc. 1st Symposium on Integrated Observing Systems, American Meteorological Society, Long Beach, CA.Google Scholar
  28. Masutani, M., and Coauthors, 2010: Observing system simulation experiments Data Assimilation, W. Lahoz, B. Khattatov, and R. Menard, Eds., Springer, 647–679, https://doi.org/10.1007/978-3-540-74703-1 24.Google Scholar
  29. McCreary, J. P., 1981: A linear stratified ocean model of the equatorial undercurrent. Philos. Trans. Roy. Soc. London, 298, 603–635, https://doi.org/10.1098/rsta.1981.0002. CrossRefGoogle Scholar
  30. McPhaden, M. J., and Coauthors, 1998: The tropical oceanglobal atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 169–14 240, https://doi.org/10.1029/97JC02906. CrossRefGoogle Scholar
  31. McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 1740–1745, https://doi.org/10.1126/science.1132588. CrossRefGoogle Scholar
  32. Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122, 1405–1446.CrossRefGoogle Scholar
  33. Moore, A. M., and R. Kleeman, 1997a: The singular vectors of a coupled ocean -atmosphere model of ENSO, Part I: Thermodynamics, energetics and error growth. Quart. J. Roy. Meteor. Soc., 123, 953–981.CrossRefGoogle Scholar
  34. Moore, A. M., and R. Kleeman, 1997b: The singular vectors of a coupled ocean-atmosphere model of ENSO, Part II: Sensitivity studies and dynamical interpretation. Quart. J. Roy. Meteor. Soc., 123, 983–1006.CrossRefGoogle Scholar
  35. Moore, A. M., and R. Kleeman, 2001: The differences between the optimal perturbations of coupled models of ENSO. J. Climate, 14, 138–163.CrossRefGoogle Scholar
  36. Moore, A. M. J. Vialard, A. Weaver, D. L. T. Anderson, R. Kleeman, and J. R. Johnson, 2003: The role of air–sea interaction in controlling the optimal perturbations of low-frequency tropical coupled ocean–atmosphere modes. J. Climate, 16, 951–968.CrossRefGoogle Scholar
  37. Morss, R. E., and D. S. Battisti, 2004a: Designing efficient observing networks for ENSO prediction. J. Climate, 17, 3074–3089, https://doi.org/10.1175/1520-0442(2004)017 <3074:DEONFE>2.0.CO;2.CrossRefGoogle Scholar
  38. Morss, R. E., and D. S. Battisti, 2004b: Evaluating observing requirements for ENSO prediction: Experiments with an intermediate coupled model. J. Climate, 17, 3057–3073, https://doi.org/10.1175/1520-0442(2004)017<3057:EORFEP>2.0. CO;2.CrossRefGoogle Scholar
  39. Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics, 10, 493–501, https://doi.org/10.5194/npg-10-493-2003. CrossRefGoogle Scholar
  40. Mu, M., W. S. Duan, and B. Wang, 2007a: Season-dependent dynamics of nonlinear optimal error growth and El Ni˜no-Southern Oscillation predictability in a theoretical model. J. Geophys. Res., 112, https://doi.org/10.1029/2005JD006981.
  41. Mu, M., H. Xu, and W. S. Duan, 2007b: A kind of initial errors related to “spring predictability barrier” for El Ni˜no events in Zebiak-Cane model. Geophys. Res. Lett., 34, https://doi.org/10.1029/2006GL027412.
  42. Mu, M., F. F. Zhou, and H. L. Wang, 2009: A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon. Wea. Rev., 137, 1623–1639, https://doi.org/10.1175/2008MWR2640.1. CrossRefGoogle Scholar
  43. Mu, M., Y. S. Yu, H. Xu, and T. T. Gong, 2014: Similarities between optimal precursors for ENSO events and optimally growing initial errors in El Ni˜no predictions. Theor. Appl. Climatol., 115, 461–469, https://doi.org/10.1007/s00704-013-0909-x. CrossRefGoogle Scholar
  44. Mu, M., W. S. Duan, D. K. Chen, and W. D. Yu, 2015: Target observations for improving initialization of high-impact oceanatmospheric environmental events forecasting. National Science Review, 2, 226–236, https://doi.org/10.1093/nsr/nwv021. CrossRefGoogle Scholar
  45. Newman, M., M. A. Alexander, and J. D. Scott, 2011: An empirical model of tropical ocean dynamics. Climate Dyn., 37, 1823–1841, https://doi.org/10.1007/s00382-011-1034-0. CrossRefGoogle Scholar
  46. Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55, 633–653, https://doi.org/10.1175/1520-0469 (1998)055<0633:SVMAAO>2.0.CO;2.CrossRefGoogle Scholar
  47. Penland, C., and L. Matrosova, 1994: A balance condition for stochastic numerical models with application to the El Ni˜no-Southern Oscillation. J. Climate, 7, 1352–1372, https://doi.org/10.1175/1520-0442(1994)007<1352:ABCFSN>2.0. CO;2.CrossRefGoogle Scholar
  48. Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 1999–2024, https://doi.org/10.1175/1520-0442 (1995)008<1999:TOGOTS>2.0.CO;2.CrossRefGoogle Scholar
  49. Penland, C., and L. Matrosova, 2006: Studies of El Ni˜no and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J. Climate, 19, 5796–5815, https://doi.org/10.1175/JCLI3951.1. CrossRefGoogle Scholar
  50. Philander, S. G. H., 1983: El-Ni˜no southern oscillation phenomena. Nature, 302, 295–301, https://doi.org/10.1038/302295a0. CrossRefGoogle Scholar
  51. Rosati, A., K. Miyakoda, and R. Gudgel, 1997: The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon. Wea. Rev., 125, 754–772, https://doi.org/10.1175/1520-0493(1997)125<0754:TIOOIC>2.0.CO;2.CrossRefGoogle Scholar
  52. Snyder, C., 1996: Summary of an informal workshop on adaptive observations and FASTEX. Bull. Amer. Meteorol. Soc., 77, 953–961.CrossRefGoogle Scholar
  53. Tang, Y., 2002: Hybrid coupled models of the tropical Pacific: I Interannual variability. Climate Dyn., 19, 331–342, https://doi.org/10.1007/s00382-002-0230-3. CrossRefGoogle Scholar
  54. Tang, Y., and W. Hsieh, 2002: Hybrid coupled models of the tropical Pacific-II ENSO prediction. Climate Dyn., 19, 343–353, https://doi.org/10.1007/s00382-002-0231-2. CrossRefGoogle Scholar
  55. Tang, Y., R. Kleeman, and S. Miller, 2006: ENSO predictability of a fully coupled GCM model using singular vector analysis. Journal of Climate, 19(14), 3361–3377.CrossRefGoogle Scholar
  56. Tao, L. J., R. H. Zhang, and C. Gao, 2017: Initial error-induced optimal perturbations in ENSO predictions, as derived from an intermediate coupled model. Adv. Atmos. Sci., 34(6), 791–803, https://doi.org/10.1007/s00376-017-6266-4. CrossRefGoogle Scholar
  57. Thompson, C. J., 1998: Initial conditions for optimal growth in a coupled ocean–atmosphere model of ENSO. J. Atmos. Sci., 55, 537–557.CrossRefGoogle Scholar
  58. Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 3297–3319, https://doi.org/10.1175/1520-0493(1997)125<3297: EFANAT>2.0.CO;2.CrossRefGoogle Scholar
  59. Wang, B., and Z. Fang, 1996: Chaotic oscillations of tropical climate: A dynamic system theory for ENSO. J. Atmos. Sci., 53, 2786–2802, https://doi.org/10.1175/1520-0469(1996)053 <2786:COOTCA>2.0.CO;2.CrossRefGoogle Scholar
  60. Wang, J., Y. Lu, F. Wang, and R. H. Zhang, 2017: Surface current in “hotspot” serves as a new and effective precursor for El Ni˜no prediction. Scientific Reports, 7(1),166.Google Scholar
  61. Webster, P. J., 1995: The annual cycle and the predictability of the tropical coupled ocean-atmosphere system. Meteor. Atmos. Phys., 56, 33–55, https://doi.org/10.1007/BF01022520. CrossRefGoogle Scholar
  62. Wu, C. C., J. H. Chen, P. H. Lin, and K. H. Chou, 2007: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64, 2611–2626, https://doi.org/10.1175/JAS3974.1. CrossRefGoogle Scholar
  63. Xue, Y., M. A. Cane, and S. E. Zebiak, 1997a: Predictability of a coupled model of ENSO using singular vector analysis. Part I: Optimal growth in seasonal background and ENSO cycle. Mon. Wea. Rev., 125, 2043–2056.Google Scholar
  64. Xue, Y., M. A. Cane, S. E. Zebiak, and T. N. Palmer, 1997b: Predictability of a coupled model of ENSO using singular vector analysis. Part II: Optimal growth and forecast skill. Mon.Wea. Rev., 125, 2057–2073.Google Scholar
  65. Yu, Y. S., W. S. Duan, H. Xu, and M. Mu, 2009: Dynamics of nonlinear error growth and season-dependent predictability of El Ni˜no events in the Zebiak-Cane model. Quart. J. Roy. Meteor. Soc., 135, 2146–2160, https://doi.org/10.1002/qj.526. CrossRefGoogle Scholar
  66. Yu, Y. S., M. Mu, W. S. Duan, and T. T. Gong, 2012: Contribution of the location and spatial pattern of initial error to uncertainties in El Ni˜no predictions. J. Geophys. Res., 117, https://doi.org/10.1029/2011JC007758.
  67. Zebiak, S. E., and M. A. Cane, 1987: A model el Ni˜no-southern oscillation. Mon. Wea. Rev., 115, 2262–2278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.CrossRefGoogle Scholar
  68. Zhang, J., W. S. Duan, and X. F. Zhi, 2015: Using CMIP5 model outputs to investigate the initial errors that cause the “spring predictability barrier” for El Ni˜no events. Science China Earth Sciences, 58, 685–696, https://doi.org/10.1007/s11430-014-4994-1. CrossRefGoogle Scholar
  69. Zhang, R. H., L. M. Rothstein, and A. J. Busalacchi, 1998: Origin of upper-ocean warming and El Ni˜no change on decadal scales in the tropical Pacific Ocean. Nature, 391(6670), 879–883, https://doi.org/10.1038/36081. CrossRefGoogle Scholar
  70. Zhang, R. H., A. J. Busalacchi, and D. G. DeWitt, 2008: The roles of atmospheric stochastic forcing (SF) and oceanic entrainment temperature (Te) in decadal modulation of ENSO. J. Climate, 21, 674–704, https://doi.org/10.1175/2007JCLI1665.1. CrossRefGoogle Scholar
  71. Zhang, R. H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2003: A new intermediate coupled model for El Ni˜no simulation and prediction. Geophys. Res. Lett., 30, https://doi.org/10.1029/2003GL018010.
  72. Zhang, R. H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2005b: Retrospective El Ni˜no forecasts using an improved intermediate coupled model. Mon. Wea. Rev., 133, 2777–2802, https://doi.org/10.1175/MWR3000.1. CrossRefGoogle Scholar
  73. Zhang, R. H., F. Zheng, J. Zhu, and Z. G. Wang, 2013: A successful real-time forecast of the 2010-11 La Ni˜na event. Scientific Reports, 3, 1108, https://doi.org/10.1038/srep01108. CrossRefGoogle Scholar
  74. Zhang, R. H., A. J. Busalacchi, R. G. Murtugudde, E. C. Hackert, and J. Ballabrera-Poy, 2004: A new approach to improved SST anomaly simulations using altimeter data: Parameterizing entrainment temperature from sea level. Geophys. Res. Lett., 31, https://doi.org/10.1029/2003GL019237.
  75. Zhang, R. H., R. Kleeman, S. E. Zebiak, N. Keenlyside, and S. Raynaud, 2005a: An empirical parameterization of subsurface entrainment temperature for improved SST anomaly simulations in an intermediate ocean model. J. Climate, 18, 350–371, https://doi.org/10.1175/JCLI-3271.1. CrossRefGoogle Scholar
  76. Zheng, F., J. Zhu, R. H. Zhang, and G. Q. Zhou, 2006: Improved ENSO forecasts by assimilating sea surface temperature observations into an intermediate coupled model. Adv. Atmos. Sci., 23, 615–624, https://doi.org/10.1007/s00376-006-0615-z. CrossRefGoogle Scholar
  77. Zhu, H. Y., and A. Thorpe, 2006: Predictability of extratropical cyclones: The influence of initial condition and model uncertainties. J. Atmos. Sci., 63, 1483–1497, https://doi.org/10.1175/JAS3688.1. CrossRefGoogle Scholar
  78. Zhu, J. S., B. H. Huang, L. Marx, J. L. Kinter III, M. A. Balmaseda, R. H. Zhang, and Z. Z. Hu, 2012: Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys. Res. Lett., 39, L09602, https://doi.org/10.1029/2012GL051503. CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Ocean Circulation and Waves, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations