Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 2, pp 169–181 | Cite as

First surface-based estimation of the aerosol indirect effect over a site in southeastern China

  • Jianjun LiuEmail author
  • Zhanqing Li
Original Paper

Abstract

The deployment of the U.S. Atmospheric Radiation Measurement mobile facility in Shouxian from May to December 2008 amassed the most comprehensive set of measurements of atmospheric, surface, aerosol, and cloud variables in China. This deployment provided a unique opportunity to investigate the aerosol–cloud interactions, which are most challenging and, to date, have not been examined to any great degree in China. The relationship between cloud droplet effective radius (CER) and aerosol index (AI) is very weak in summer because the cloud droplet growth is least affected by the competition for water vapor. Mean cloud liquid water path (LWP) and cloud optical depth (COD) significantly increase with increasing AI in fall. The sensitivities of CER and LWP to aerosol loading increases are not significantly different under different air mass conditions. There is a significant correlation between the changes in hourly mean AI and the changes in hourly mean CER, LWP, and COD. The aerosol first indirect effect (FIE) is estimated in terms of relative changes in both CER (FIECER) and COD (FIECOD) with changes in AI for different seasons and air masses. FIECOD and FIECER are similar in magnitude and close to the typical FIE value of ∼ 0.23, and do not change much between summer and fall or between the two different air mass conditions. Similar analyses were done using spaceborne Moderate Resolution Imaging Spectroradiometer data. The satellite-derived FIE is contrary to the FIE estimated from surface retrievals and may have large uncertainties due to some inherent limitations.

Keywords

ground-based measurements aerosol indirect effect southeastern China 

摘 要

2008 年 5 月至 12 月, 美国大气辐射观测移动设施在我国寿县地区进行了连续观测, 并获得了该地区大气, 地面, 气溶胶以及云等大量的综合观测资料. 该观测为地基研究我国气溶胶和云的相互作用提供了极为难得的机会. 气溶胶与云的相互作用是气候变化研究中最具有挑战性的科学问题之一, 而到目前为止, 我国几乎没有地基观测研究. 由于云滴粒子增长受到水汽竞争的影响, 云滴有效半径与气溶胶指数之间的关系在夏季较弱. 秋季, 云平均的液态水路径以及云光学厚度随气溶胶指数的增加显著增加. 云滴有效半径和云液态水路径对气溶胶增加的敏感性在不同大气团影响下并没有显著的差异. 平均的气溶胶指数的小时变化与平均的云滴有效半径, 液态水路径和光学厚度存在显著的相关性. 利用云滴有效半径和云光学厚度对气溶胶指数的相对变化, 分别评估了不同季节以及不同气团影响下的气溶胶第一间接效应的量级. 利用两个云的参数计算的气溶胶第一间接效应的量级相似, 接近于典型的第一间接效应的量级 (∼0.23), 并且在夏季与冬季以及不同的两个气团情况下并不存在明显的变化. 与地面观测值得到的第一间接效应相比, 由于某些固有的限制, 利用中分辨率成像光谱仪 (MODIS) 得到的第一间接效应存在着很大的不缺定性.

关键词

地基观测 气溶胶间接效应 中国东南部 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Data were obtained from the ARM Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. The reanalysis data were obtained from the ECMWF model runs for ARM analysis provided by the ECMWF. M. Cribb helped edit the manuscript. The study was supported by the National Basic Research “973” Program of China (Grant No. 2013CB955804), a Natural Science Foundation of China research project (Grant No. 91544217), and the U.S. National Science Foundation (Grant No. AGS1534670).

References

  1. Bréon, F.-M., D. Tanré, and S. Generosol, 2002: Aerosol effect on cloud droplet size monitored from satellite. Science, 295, 834–838, https://doi.org/10.1126/science.1066434.CrossRefGoogle Scholar
  2. Bulgin, C. E., and Coauthors, 2008: Regional and seasonal variations of the Twomey indirect effect as observed by the ATSR-2 satellite instrument. Geophys. Res. Lett., 35, L02811, https://doi.org/10.1029/2007GL031394.CrossRefGoogle Scholar
  3. Chiu, J. C., C.-H. Huang, A. Marshak, I. Slutsker, D. M. Giles, B. N. Holben, Y. Knyazikhin, and W. J. Wiscombe, 2010: Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations. J. Geophys. Res., 115, D14202, https://doi.org/10.1029/2009JD013121.CrossRefGoogle Scholar
  4. Chiu, J. C., and Coauthors, 2012: Cloud droplet size and liquid water path retrievals from zenith radiance measurements: Examples from the Atmospheric Radiation MEASUREMENT Program and the Aerosol Robotic Network. Atmos. Chem. Phys., 12(21), 10 313–10 329, https://doi.org/10.5194/acp-12-10313-2012.CrossRefGoogle Scholar
  5. Costantino, L., and F.-M. Bréon, 2013: Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations. Atmos. Chem. Phys., 13(1), 69–88, https://doi.org/10.5194/acp-13-69-2013.CrossRefGoogle Scholar
  6. Dong, X. Q., P. Minnis, B. K. Xi, S. Sun-Mack, and Y. Chen, 2008: Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site. J. Geophys. Res., 113, D03204, https://doi.org/10.1029/2007JD008438.Google Scholar
  7. Fan, J. W., L. R. Leung, Z. Q. Li, H. Morrison, H. B. Chen, Y. Q. Zhou, Y. Qian, and Y. Wang, 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res., 117, D00K36, https://doi.org/10.1029/2011JD016537.Google Scholar
  8. Fan, X. H., H. B. Chen, X. G. Xia, Z. Q. Li, and M. Cribb, 2010: Aerosol optical properties from the Atmospheric Radiation Measurement Mobile Facility at Shouxian, China. J. Geophys. Res., 115(D7), D00K33, https://doi.org/10.1029/2010JD014650.Google Scholar
  9. Feingold, G., W. L. Eberhard, D. E. Veron, and M. Previdi, 2003: First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30(6), https://doi.org/10.1029/2002GL016633.Google Scholar
  10. Feingold, G., R. Furrer, P. Pilewskie, L. A. Remer, Q. L. Min, and H. Jonsson, 2006: Aerosol indirect effect studies at Southern Great Plains during the May 2003 Intensive Operations Period. J. Geophys. Res., 111, D05S14, https://doi.org/10.1029/2004JD005648.CrossRefGoogle Scholar
  11. Garrett, T. J., C. Zhao, X. Dong, G. G. Mace, and P. V. Hobbs, 2004: Effects of varying aerosol regimes on low-level Arctic stratus. Geophys. Res. Lett., 31, L17105, https://doi.org/10.1029/2004GL019928.CrossRefGoogle Scholar
  12. Harikishan, G., B. Padmakumari, R. S. Maheskumar, G. Pandithurai, and Q. L. Min, 2016: Aerosol indirect effects from ground-based retrievals over the rain shadow region in Indian subcontinent. J. Geophys. Res., 121, 2369–2382, https://doi.org/10.1002/2015JD024577.CrossRefGoogle Scholar
  13. Heintzenberg, J., and Coauthors, 2006: Intercomparisons and aerosol calibrations of 12 commercial integrating nephelometers of three manufacturers. J. Atmos. Oceanic Technol., 23, 902–914, https://doi.org/10.1175/jtech1892.1.CrossRefGoogle Scholar
  14. Holben, B. N., and Coauthors, 1998: AERONET-a federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5.CrossRefGoogle Scholar
  15. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution ofWorking Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, et al., Eds, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535pp, https://doi.org/10.1017/CBO9781107415324.Google Scholar
  16. Jeong, M.-J., and Z. Q. Li, 2010: Separating real and apparent effects of cloud, humidity, and dynamics on aerosol optical thickness near cloud edges. J. Geophys. Res., 115, D00K32, https://doi.org/10.1029/2009JD013547.CrossRefGoogle Scholar
  17. Kim, B.-G., S. E. Schwartz, M. A. Miller, and Q. L. Min, 2003: Effective radius of cloud droplets by ground-based remote sensing: Relationship to aerosol. J. Geophys. Res., 108(D23), 4740, https://doi.org/10.1029/2003JD003721.CrossRefGoogle Scholar
  18. Kim, B.-G., M. A. Miller, S. E. Schwartz, Y. G. Liu, and Q. L. Min, 2008: The role of adiabaticity in the aerosol first indirect effect. J. Geophys. Res., 113, D05210, https://doi.org/10.1029/2007JD008961.Google Scholar
  19. Lee, K. H., Z. Q. Li, M. C. Cribb, J. J. Liu, L. Wang, Y. F. Zheng, X. G. Xia, H. B. Chen, and B. Li, 2010: Aerosol optical depth measurements in eastern China and a new calibration method. J. Geophys. Res., 115, D00K11, https://doi.org/10.1029/2009JD012812.CrossRefGoogle Scholar
  20. Lee, S. S., J. E. Penner, and S. M. Saleeby, 2009: Aerosol effects on liquid-water path of thin stratocumulus clouds. J. Geophys. Res., 114, D07204, https://doi.org/10.1029/2008JD010513.Google Scholar
  21. Li, Z., and Coauthors, 2009: Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Annales Geophysicae, 27, 2755–2770, https://doi.org/10.5194/angeo-27-2755-2009.CrossRefGoogle Scholar
  22. Li, Z. Q., and Coauthors, 2007: Preface to special section on East Asian studies of tropospheric aerosols: An international regional experiment (EAST-AIRE). J. Geophys. Res., 112, D22S00, https://doi.org/10.1029/2007JD008853.Google Scholar
  23. Li, Z. Q., and Coauthors, 2011: East Asian studies of tropospheric aerosols and their impact on regional climate (EAST-AIRC): An overview. J. Geophys. Res., 116, D00K34, https://doi.org/10.1029/2010JD015257.Google Scholar
  24. Liljegren J. C., and B. M. Lesht, 2004: Preliminary results with the twelve-channel microwave radiometer profiler at the North Slope of Alaska Climate Research Facility. Fourteenth ARM Science Team Meeting Proceedings, Albuquerque, New Mexico.Google Scholar
  25. Liljegren, J. C., E. E. Clothiaux, G. G. Mace, S. Kato, and X. Q. Dong, 2001: A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. J. Geophys. Res., 106, 14 485–14 500, https://doi.org/10.1029/2000JD900817.CrossRefGoogle Scholar
  26. Liu, G. S., H. F. Shao, J. A. Coakley Jr., J. A. Curry, J. A. Haggerty, and M. A. Tschudi, 2003: Retrieval of cloud droplet size from visible and microwave radiometric measurements during INDOEX: Implication to aerosols’ indirect radiative effect. J. Geophys. Res., 108(D1), 4006, https://doi.org/10.1029/2001JD001395.CrossRefGoogle Scholar
  27. Liu, J. J., and Z. Q. Li, 2014: Estimation of cloud condensation nuclei concentration from aerosol optical quantities: Influential factors and uncertainties. Atmos. Chem. Phys., 14(1), 471–483, https://doi.org/10.5194/acp-14-471-2014.CrossRefGoogle Scholar
  28. Liu, J. J., Y. F. Zheng, Z. Q. Li, C. Flynn, E. J. Welton, and M. Cribb, 2011a: Transport, vertical structure and radiative properties of dust events in southeast China determined from ground and space sensors. Atmos. Environ., 45(35), 6469–6480, https://doi.org/10.1016/j.atmosenv.2011.04.031.CrossRefGoogle Scholar
  29. Liu, J. J., Y. F. Zheng, Z. Q. Li, and M. Cribb, 2011b: Analysis of cloud condensation nuclei properties at a polluted site in southeastern China during the AMF-China Campaign. J. Geophys. Res., 116, D00K35, https://doi.org/10.1029/2011JD016395.Google Scholar
  30. Liu, J. J., Y. F. Zheng, Z. Q. Li, C. Flynn, and M. Cribb, 2012: Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China. J. Geophys. Res., 117, D00K38, https://doi.org/10.1029/2011JD016490.CrossRefGoogle Scholar
  31. Liu, J. J., Z. Q. Li, Y. F. Zheng, J. C. Chiu, F. S. Zhao, M. Cadeddu, F. Z. Weng, and M. Cribb, 2013: Cloud optical and microphysical properties derived from ground-based and satellite sensors over a site in the Yangtze Delta region. J. Geophys. Res., 118, 9141–9152, https://doi.org/10.1002/jgrd.50648.Google Scholar
  32. Liu, J. J., Z. Q. Li, Y. F. Zheng, and M. Cribb, 2015: Cloudbase distribution and cirrus properties based on micropulse lidar measurements at a site in southeastern China. Adv. Atmos. Sci., 32(7), 991–1004, https://doi.org/10.1007/s00376-014-4176-2.CrossRefGoogle Scholar
  33. Liu, J. J., Z. Q. Li, and M. Cribb, 2016: Response of marine boundary layer cloud properties to aerosol perturbations associated with meteorological conditions from the 19-Month AMF-Azores campaign. J. Atmos. Sci., 73(11), 4253–4268, https://doi.org/10.1175/JAS-D-15-0364.1.CrossRefGoogle Scholar
  34. Ma, J. Z., Y. Chen, W. Wang, P. Yan, H. J. Liu, S. Y. Yang, Z. J. Hu, and J. Lelieveld, 2010: Strong air pollution causes widespread haze-clouds over China. J. Geophys. Res., 115, D18204, https://doi.org/10.1029/2009JD013065.CrossRefGoogle Scholar
  35. Marshak, A., Y. Knyazikhin, K. D. Evans, and W. J. Wiscombe, 2004: The “RED versus NIR” plane to retrieve brokencloud optical depth from ground-based measurements. J. Atmos. Sci., 61, 1911–1925, https://doi.org/10.1175/1520-0469(2004)061<1911:TRVNPT>2.0.CO;2.CrossRefGoogle Scholar
  36. McComiskey, A., and G. Feingold, 2008: Quantifying error in the radiative forcing of the first aerosol indirect effect. Geophys. Res. Lett., 35, L02810, https://doi.org/10.1029/2007GL032667.CrossRefGoogle Scholar
  37. McComiskey, A., and G. Feingold, 2012: The scale problem in quantifying aerosol indirect effects. Atmos. Chem. Phys., 12(2), 1031–1049, https://doi.org/10.5194/acp-12-1031-2012.CrossRefGoogle Scholar
  38. McComiskey, A., G. Feingold, A. S. Frisch, D. D. Turner, M. A. Miller, J. C. Chiu, Q. L. Min, and J. A. Ogren, 2009: An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. J. Geophys. Res., 114, D09203, https://doi.org/10.1029/2008JD011006.CrossRefGoogle Scholar
  39. Menon, S., A. D. Del Genio, Y. Kaufman, R. Bennartz, D. Koch, N. Loeb, and D. Orlikowski, 2008: Analyzing signatures of aerosol-cloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect. J. Geophys. Res., 113, D14S22, https://doi.org/10.1029/2007JD009442.CrossRefGoogle Scholar
  40. Min, Q.-L., M. Duan, and R. Marchand, 2003: Validation of surface retrieved cloud optical properties with in situ measurements at the Atmospheric Radiation Measurement Program (ARM) South Great Plains site. J. Geophys. Res., 108(D17), https://doi.org/10.1029/2003jd003385.Google Scholar
  41. Myhre, G., and Coauthors, 2007: Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models. Atmos. Chem. Phys., 7, 3081–3101, https://doi.org/10.5194/acp-7-3081-2007.CrossRefGoogle Scholar
  42. Nakajima, T., A. Higurashi, K. Kawamoto, and J. E. Penner, 2001: A possible correlation between satellite derived cloud and aerosol microphysical parameters. Geophys. Res. Lett., 28(7), 1171–1174, https://doi.org/10.1029/2000GL012186.CrossRefGoogle Scholar
  43. Pandithurai, G., T. Takamura, J. Yamaguchi, K. Miyagi, T. Takano, Y. Ishizaka, S. Dipu, and A. Shimizu, 2009: Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region. Geophys. Res. Lett., 36, L13805, https://doi.org/10.1029/2009GL038451.CrossRefGoogle Scholar
  44. Quaas, J., and Coauthors, 2009: Aerosol indirect effects-General circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 8697–8717, https://doi.org/10.5194/acp-9-8697-2009.CrossRefGoogle Scholar
  45. Rolph, G. D., 2016: Real-time Environmental Applications and Display System (READY). NOAA Air Resources Laboratory, College Park, MD.Google Scholar
  46. Rosenfeld, D., and G. Feingold, 2003: Explanation of the discrepancies among satellite observations of the aerosol indirect effects. Geophys. Res. Lett., 30(14), https://doi.org/10.1029/2003GL017684.Google Scholar
  47. Stein, A. F., R. Draxle, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1.CrossRefGoogle Scholar
  48. Tang, J. P., P. C. Wang, L. J. Mickley, X. G. Xia, H. Liao, X. Yue, L. Sun, and J. R. Xia, 2014: Positive relationship between liquid cloud droplet effective radius and aerosol optical depth over Eastern China from satellite data. Atmos. Environ., 84, 244–253, https://doi.org/10.1016/j.atmosenv.2013.08.024.CrossRefGoogle Scholar
  49. Twohy, C. H., M. D. Petters, J. R. Snider, B. Stevens, W. Tahnk, M. Wetzel, L. Russell, and F. Burnet, 2005: Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact. J. Geophys. Res., 110, D08203, https://doi.org/10.1029/2004JD005116.CrossRefGoogle Scholar
  50. Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34(7), 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.CrossRefGoogle Scholar
  51. V´arnai, T., and A. Marshak, 2014: Near-cloud aerosol properties from the 1-km resolution MODIS ocean product. J. Geophys. Res., 119, 1546–1554, https://doi.org/10.1002/2013JD020633.CrossRefGoogle Scholar
  52. Wang, F., J. P. Guo, Y. R. Wu, X. Y. Zhang, M. J. Deng, X. W. Li, J. H. Zhang, and J. Zhao, 2014: Satellite observed aerosolinduced variability in warm cloud properties under different meteorological conditions over eastern China. Atmos. Environ., 84, 122–132, https://doi.org/10.1016/j.atmosenv.2013.11.018.CrossRefGoogle Scholar
  53. Wang, M. H., and Coauthors, 2012: Constraining cloud lifetime effects of aerosols using A-Train satellite observations. Geophys. Res. Lett., 39, L15709, https://doi.org/10.1029/2012GL052204.Google Scholar
  54. Wang, Y., J. W. Fan, R. Y. Zhang, L. R. Leung, and C. Franklin, 2013: Improving bulk microphysics parameterizations in simulations of aerosol effects. J. Geophys. Res., 118, 5361–5379, https://doi.org/10.1002/jgrd.50432.Google Scholar
  55. Wang, Z. E., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 1665–1682, https://doi.org/10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2.CrossRefGoogle Scholar
  56. Xia, X. G., Z. Q. Li, B. Holben, P. C. Wang, T. Eck, H. B. Chen, M. Cribb, and Y. X. Zhao, 2007: Aerosol optical properties and radiative effects in the Yangtze Delta region of China. J. Geophys. Res., 112, D22S12, https://doi.org/10.1029/2007JD008859.Google Scholar
  57. Xu, J., M. H. Bergin, X. Yu, G. Liu, J. Zhao, C. M. Carrico, and K. Baumann, 2002: Measurement of aerosol chemical, physical and radiative properties in the Yangtze delta region of China. Atmos. Environ., 36(2), 161–173, https://doi.org/10.1016/S1352-2310(01)00455-1.CrossRefGoogle Scholar
  58. Yuan, T. L., Z. Q. Li, R. Y. Zhang, and J. W. Fan, 2008: Increase of cloud droplet size with aerosol optical depth: An observation and modeling study. J. Geophys. Res., 113, D04201, https://doi.org/10.1029/2007JD008632.CrossRefGoogle Scholar
  59. Zhang, S. P., and Coauthors, 2016: On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmos. Chem. Phys., 16(5), 2765–2783, https://doi.org/10.5194/acp-16-2765-2016.CrossRefGoogle Scholar
  60. Zhao, C. F., S. A. Klein, S. C. Xie, X. H. Liu, J. S. Boyle, and Y. Y. Zhang, 2012: Aerosol first indirect effects on nonprecipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites. Geophys. Res. Lett., 39, L08806, https://doi.org/10.1029/2012GL051213.Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkUSA
  2. 2.State Laboratory of Earth Surface Process and Resource Ecology, College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina

Personalised recommendations