Advances in Atmospheric Sciences

, Volume 34, Issue 12, pp 1437–1446 | Cite as

Multiyear observations of deposition-mode ice nucleating particles at two high-altitude stations in India

  • Sandeep D. Wagh
  • Baban Nagare
  • Sanjay D. More
  • P. Pradeep Kumar
Original Paper
  • 40 Downloads

Abstract

Ice nucleating particle (INP) measurements were made at two high-altitude stations in India. Aerosols collected on filter paper at Girawali Observatory, Inter University Center for Astronomy & Astrophysics (IGO), and at the Radio Astronomy Center, Ooty (RAC), were activated in deposition mode using a thermal gradient diffusion chamber to determine the INP concentrations. The measurement campaigns at IGO were conducted during 2011, 2013 and 2014, and at RAC during 2013 and 2014. When the aerosol samples were exposed to an ice supersaturation of between 5% and 23% in the temperature range −17.6°C to −22°C, the maximum INP number concentration at IGO and RAC was 1.0 L−1 and 1.6 L−1, respectively. A maximum correlation coefficient of 0.76 was observed between the INP number concentration and ice supersaturation. The airmass trajectories analyzed for the measurement campaigns showed that the Arabian Desert and arid regions were the main INP contributors. Elemental analysis of particles showed the presence of Na, Cl, Si, Al, Fe, Cu, Co, Cd, S, Mn and K, as well as some rare-Earth elements like Mo, Ru, La, Ce, V and Zr. When aerosols in the size range 0.5–20 μm were considered, the fraction that acted as INPs was 1: 104 to 1: 106 at IGO, and 1: 103 to 1: 104 at RAC. The higher ratio of INPs to aerosols at RAC than IGO may be attributable to the presence of rare-Earth elements observed in the aerosol samples at RAC, which were absent at IGO.

Key words

ice nuclei diffusion chamber aerosol high-altitude observation 

摘要

本文通过印度两个高海拔站开展冰核观测. 在天文与天体物理校际中心 (IGO)的吉徕瓦里(Girawali)天文台和乌蒂(Ooty)射电天文中心(RAC), 气溶胶通过滤膜收集后在热力梯度扩散云室中测量凝华核化形成的冰核数浓度. IGO站的观测时间为2011年、2013年和2014年, RAC站的观测时间为2013年和2014年. 在冰面过饱和度为5%至23%、温度为−17.6 °C至−22°C的条件下, 观测到的最大冰核数浓度在IGO站和RAC站分别为1.0 L−1和1.6 L−1. 冰核数浓度和冰面过饱和度之间的最大相关系数达到0.76. 气团轨迹分析表明冰核主要来自阿拉伯沙漠和干旱区. 元素分析显示气溶胶粒子中含有Na、Cl、Si、Al、Fe、Cu、Co、Cd、S、Mn和K元素以及稀有元素Mo、Ru、La、Ce、V和Zr. 气溶胶粒径为0.5至20 µm时, 活化冰核占气溶胶比例在IGO站为1:104 至1:106, 在RAC站为1:103 至1:104. 相比IGO站, RAC站高的冰核占比归因于气溶胶粒子中含有IGO站缺少的稀有元素.

关键词

冰核 扩散云室 气溶胶 高海拔观测 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Dr. Ranjan GUPTA, Dr. Vijay MOHAN, and Dr. P. K. MANOHARAN for providing all the facilities for carrying out the observations. The authors are also thankful to Sushant PURANIK, Rajan PULAKESHI, Sachin PATADE, K. C. Sinha RAY and P. N. SEN for fruitful discussions. Support received under a UGC-Rajiv Gandhi National Research Fellowship and DST-PURSE grant is acknowledged. The authors gratefully acknowledge the NOAA Air Resources Laboratory for the provision of the HYS-PLIT transport and dispersion model used in this publication for back trajectory analysis. We also thank the Department of Physics, Savitribai Phule Pune University, for extending the SEM-EDX facility for carrying out the analysis. Finally, we also thank the two anonymous reviewers for their critical comments, which improved the manuscript. The work is supported by DST-PURSE grant (GOI-A-670).

References

  1. Abbatt, J. P. D., S. Benz, D. J. Cziczo, Z. Kanji, U. Lohmann, and O. Möhler, 2006: Solid ammonium sulfate aerosols as ice nuclei: A path way for cirrus cloud formation. Science, 313(5794), 1770–1773, doi: 10.1126/science.1129726.CrossRefGoogle Scholar
  2. Boose, Y., and Coauthors, 2016: Ice nucleating particles in the Saharan Air Layer. Atmospheric Chemistry and Physics, 16(14), 9067–9087, doi: 10.5194/acp-16-9067-2016.CrossRefGoogle Scholar
  3. Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 571–657.Google Scholar
  4. Budhavant, K. B., P. S. P. Rao, P. D. Safai, R. D. Gawhane, and M. P. Raju, 2010: ChemistryofrainwaterandaerosolsoverBayof-BengalduringCTCZprogram. Journal of Atmospheric Chemistry, 65, 171–183, doi: 10.1007/s10874-011-9187-0.CrossRefGoogle Scholar
  5. Chou, C., O. Stetzer, E. Weingartner, Z. Jurányi, Z. A. Kanji, and U. Lohmann, 2011: Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps. Atmospheric Chemistry and Physics, 11(10), 4725–4738, doi: 10.5194/acp-11-4725-2011.CrossRefGoogle Scholar
  6. Conen, F., S. Rodríguez, C. Hülin, S. Henne, E. Herrmann, N. Bukowiecki, and C. Alewell, 2015: Atmospheric ice nuclei at the high-altitude observatory Jungfraujoch, Switzerland. Tellus B, 67(1), 25014, http://dx.doi.org/10.3402/tellusb. v67.25014.CrossRefGoogle Scholar
  7. Cziczo, D. J., K. D. Froyd, S. J. Gallavardin, O. Moehler, S. Benz, H. Saathoff, and D. M. Murphy, 2009: Deactivation of ice nuclei due to atmospheric ally relevant surface coatings. Environmental Research Letters, 4(4), 044013, doi: 10.1088/1748-9326/4/4/044013.CrossRefGoogle Scholar
  8. DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003a: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30(14), doi: 10.1029/2003GL017410.Google Scholar
  9. DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers, 2003b: Measurements of the concentration and composition of nuclei for cirrus formation. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 14 655–14 660, doi: 10.1073/pnas.2532677100.CrossRefGoogle Scholar
  10. DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11 217–11 222, doi: 10.1073/pnas.0910818107.CrossRefGoogle Scholar
  11. DeMott, P. J., and Coauthors, 2011: Resurgence in ice nuclei measurement research. Bull. Amer. Meteor. Soc., 92(12), 1623–1635, doi: 10.1175/2011BAMS3119.1.CrossRefGoogle Scholar
  12. Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT 4 modelling system for trajectories. Australian Meteorological Magazine, 47(4), 295–308.Google Scholar
  13. Eastwood, M. L., S. Cremel, C. Gehrke, E. Girard, and A. K. Bertram, 2008: Ice nucleation on mineral dust particles: Onset conditions, nucleation rates and contact angles. J. Geophys. Res., 113(D22), doi: 10.1029/2008JD010639.Google Scholar
  14. Hiranuma, N., and Coauthors, 2015: A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: A comparison of 17 ice nucleation measurement techniques. Atmospheric Chemistry and Physics, 15(5), 2489–2518, doi: 10.5194/acp-15-2489-2015.CrossRefGoogle Scholar
  15. Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmospheric Chemistry and Physics, 12(20), 9817–9854, doi: 10.5194/acp-12-9817-2012.CrossRefGoogle Scholar
  16. Jiang, H., Y. Yin, H. Su, Y. P. Shan, and R. J. Gao, 2015: The characteristics of atmospheric ice nuclei measured at the top of Huangshan (the Yellow Mountains) in Southeast China using a newly built static vacuum water vapor diffusion chamber. Atmospheric Research, 153, 200–208, doi: 10.1016/j.atmosres.2014.08.015.CrossRefGoogle Scholar
  17. Jiang, H., Y. Yin, X. Wang, R. J. Gao, L. Yuan, K. Chen, and Y. P. Shan, 2016: The measurement and parameterization of ice nucleating particles in different backgrounds of China. Atmospheric Research, 181, 72–80, doi: 10.1016/j.atmosres.2016.06.013.CrossRefGoogle Scholar
  18. Kanji, Z. A., and J. P. D. Abbatt, 2006: Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n-hexane soot samples. J. Geophys. Res., 111(D16), doi: 10.1029/2005JD006766.Google Scholar
  19. Kanji, Z. A., O. Florea, and J. P. D. Abbatt, 2008: Ice formation via deposition nucleation on mineral dust and organics: Dependence of onset relative humidity on total particulate surface area. Environmental Research Letters, 3(2), 025004, doi: 10.1088/1748-9326/3/2/025004.CrossRefGoogle Scholar
  20. Klein, H., and Coauthors, 2010: Saharan dust and ice nuclei over Central Europe. Atmospheric Chemistry and Physics, 10(21), 10 211–10 221, doi: 10.5194/acp-10-10211-2010.CrossRefGoogle Scholar
  21. Kulkarni, G., and S. Dobbie, 2010: Ice nucleation properties of mineral dust particles: Determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles. Atmospheric Chemistry and Physics, 10(1), 95–105, doi: 10.5194/acp-10-95-2010.CrossRefGoogle Scholar
  22. Kulkarni, G., S. Dobbie, and J. B. McQuaid, 2009: A new thermal gradient ice nucleation diffusion chamber instrument: Design, development and first results using Saharan mineral dust. Atmospheric Measurement Techniques, 2(1), 221–229, doi: 10.5194/amt-2-221-2009.CrossRefGoogle Scholar
  23. Kumar, A., M. M. Sarin, and A. K. Sudheer, 2008: Mineral and anthropogenic aerosols in Arabian Sea-atmospheric boundary layer: Sources and spatial variability. Atmos. Environ., 42(21), 5169–5181, doi: 10.1016/j.atmosenv.2008.03.004.CrossRefGoogle Scholar
  24. Li, L., Y. Yin, S. F. Kong, B. Wen, K. Chen, L. Yuan, and Q. Li, 2014: Altitudinal effect to the size distribution of water soluble inorganic ions in PM at Huangshan, China. Atmos. Environ., 98, 242–252, doi: 10.1016/j.atmosenv.2014.08.077.CrossRefGoogle Scholar
  25. Lohmann, U., F. Lüönd, and F. Mahrt, 2016: An Introduction to Clouds: From the Microscale to Climate. Cambridge University Press.CrossRefGoogle Scholar
  26. Lopez, M. L., and E. E. Ávila, 2013: Measurements of natural deposition ice nuclei in Córdoba, Argentina. Atmospheric Chemistry and Physics, 13(6), 3111–3119, doi: 10.5194/acp-13-3111-2013.CrossRefGoogle Scholar
  27. Matsubara, K., 1973: Ice-forming properties of oxides of some Rare Earth Elements. J. Meteor. Soc. Japan, 51(1), 54–60, doi: 10.2151/jmsj1965.51.154.CrossRefGoogle Scholar
  28. Meyers, M. P., P. J. De Mott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31(7), 708–721, doi: 10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.CrossRefGoogle Scholar
  29. Möhler, O., and Coauthors, 2008: The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols. Environmental Research Letters, 3(2), 025007, doi: 10.1088/1748-9326/3/2/025007.CrossRefGoogle Scholar
  30. Murty, B. V. R., A. K. Roy, and R. K. Kapoor, 1967: Sources of origin and meteorological importance of hygroscopic and ice forming nuclei. Tellus, 19, 136–142, http://dx.doi.org/10.1111/j.2153-3490.1967.tb01467.x.CrossRefGoogle Scholar
  31. Parungo, F., E. Ackerman, H. Proulx, and R. Pueschel, 1978: Nucleation properties of fly ash in a coal-fired power-plant plume. Atmos. Environ., 12(4), 929–935, doi: 10.1016/0004-6981(78)90032-X.CrossRefGoogle Scholar
  32. Patade, S., B. Nagare, S. Wagh, R. S. Maheskumar, T. V. Prabha, and P. P. Kumar, 2014: Deposition ice nuclei observations over the Indian region during CAIPEEX. Atmospheric Research, 149, 300–314, doi: 10.1016/j.atmosres.2014.07.001.CrossRefGoogle Scholar
  33. Paul, S. K., 2000: A study of chloride aerosol, total aerosol and ice nuclei in the Indian regions. Pure Appl. Geophys., 157(9), 1541–1556, doi: 10.1007/PL00001132.CrossRefGoogle Scholar
  34. Phillips, V. T., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65(9), 2757–2783, doi: 10.1175/2007JAS2546.1.CrossRefGoogle Scholar
  35. Prabhakar, K., and B. E. V. Ramana Murty, 1962: Some preliminary studies on freezing nuclei concentration in air at Delhi. J. Met. Geophys., 13, 3–6.Google Scholar
  36. Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Academic Press, 954 pp.Google Scholar
  37. Rasool, S., 1973: Chemistry of the Lower Atmosphere. Springer, 335 pp.CrossRefGoogle Scholar
  38. Roberts, P., and J. Hallett, 1968: A laboratory study of the ice nucleating properties of some mineral particulates. Quart. J. Roy. Meteor. Soc., 94(399), 25–34, doi: 10.1002/qj.49709439904.CrossRefGoogle Scholar
  39. Rogers, D. C., 1988: Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmospheric Research, 22(2), 149–181, doi: 10.1016/0169-8095(88)90005-1.CrossRefGoogle Scholar
  40. Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. L. Chen, 1998: Measurements of ice nucleating aerosols during SUCCESS. Geophys. Res. Lett., 25, 1383–1386, doi: 10.1029/97GL03478.CrossRefGoogle Scholar
  41. Santachiara, G., L. Di Matteo, F. Prodi, and F. Belosi, 2010: Atmospheric particles acting as Ice Forming Nuclei in different size ranges. Atmospheric Research, 96(2–3), 266–272, doi: 10.1016/j.atmosres.2009.08.004.CrossRefGoogle Scholar
  42. Sassen, K., P. J. DeMott, J. M. Prospero, and M. R. Poellot, 2003: Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys. Res. Lett., 30(12), doi: 10.1029/2003GL017371.Google Scholar
  43. Saxena, M., D. P. Singh, T. Saud, R. Gadi, S. Singh, S. K. Sharma, and T. K. Mandal, 2014: Study on particulate polycyclic aromatic hydrocarbons over Bay of Bengal in winter season. Atmospheric Research, 145–146, 205–213, doi: 10.1016/j.atmosres.2014.04.001.CrossRefGoogle Scholar
  44. Saxena, V. K., J. N. Burford, and J. L. Kassner Jr., 1970: Operation of a thermal diffusion chamber for measurements on cloud condensation nuclei. J. Atmos. Sci., 27(1), 73–80, doi: 10.1175/1520-0469(1970)027<0073:OOATDC>2.0.CO;2.CrossRefGoogle Scholar
  45. Schnell, R. C., C. C. Van Valin, and R. F. Pueschel, 1976: Atmospheric ice nuclei: No detectable effects from a coal-fired powerplant plume. Geophys. Res. Lett., 3(11), 657–660, doi: 10.1029/GL003i011p00657.CrossRefGoogle Scholar
  46. Srinivas, B., and M. M. Sarin, 2013: Atmospheric dry-deposition of mineral dust and anthropogenic trace metals to the Bay of Bengal. J. Mar. Syst., 126, 56–68, doi: 10.1016/j.jmarsys.2012.11.004.CrossRefGoogle Scholar
  47. Vali, G., P. J. DeMott, O. Möhler, and T. F. Whale, 2015: Technical note: A proposal for ice nucleation terminology. Atmospheric Chemistry and Physics, 15, 10 263–10 270, doi: 10.5194/acp-15-10263-2015.CrossRefGoogle Scholar
  48. Welti, A., F. Lüönd, O. Stetzer, and U. Lohmann, 2009: Influence of particle size on the ice nucleating ability of mineral dusts. Atmospheric Chemistry and Physics, 9(18), 6705–6715, doi: 10.5194/acp-9-6705-2009.CrossRefGoogle Scholar
  49. Wilson, T. W., and Coauthors, 2015: A marine biogenic source of atmospheric ice-nucleating particles. Nature, 525(7568), 234–238, doi: 10.1038/nature14986.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Sandeep D. Wagh
    • 1
  • Baban Nagare
    • 2
  • Sanjay D. More
    • 1
    • 3
  • P. Pradeep Kumar
    • 1
  1. 1.Department of Atmospheric and Space SciencesSavitribai Phule Pune UniversityPuneIndia
  2. 2.Indian Institute of Tropical Meteorology PashanPuneIndia
  3. 3.Skymet Weather Services Pvt Ltd.Vashi, Navi MumbaiIndia

Personalised recommendations