Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 2, pp 224–233 | Cite as

Aerosol properties and their impacts on surface CCN at the ARM Southern Great Plains site during the 2011 Midlatitude Continental Convective Clouds Experiment

  • Timothy Logan
  • Xiquan DongEmail author
  • Baike Xi
Original Paper

Abstract

Aerosol particles are of particular importance because of their impacts on cloud development and precipitation processes over land and ocean. Aerosol properties as well as meteorological observations from the Department of Energy Atmospheric Radiation Measurement (ARM) platform situated in the Southern Great Plains (SGP) are utilized in this study to illustrate the dependence of continental cloud condensation nuclei (CCN) number concentration (NCCN) on aerosol type and transport pathways. ARM-SGP observations from the 2011 Midlatitude Continental Convective Clouds Experiment field campaign are presented in this study and compared with our previous work during the 2009–10 Clouds, Aerosol, and Precipitation in the Marine Boundary Layer field campaign over the current ARM Eastern North Atlantic site. Northerly winds over the SGP reflect clean, continental conditions with aerosol scattering coefficient (σsp) values less than 20 Mm−1 and NCCN values less than 100 cm−3. However, southerly winds over the SGP are responsible for the observed moderate to high correlation (R) among aerosol loading (σsp < 60 Mm−1) and NCCN, carbonaceous chemical species (biomass burning smoke), and precipitable water vapor. This suggests a common transport mechanism for smoke aerosols and moisture via the Gulf of Mexico, indicating a strong dependence on air mass type. NASA MERRA-2 reanalysis aerosol and chemical data are moderately to highly correlated with surface ARM-SGP data, suggesting that this facility can represent surface aerosol conditions in the SGP, especially during strong aerosol loading events that transport via the Gulf of Mexico. Future long-term investigations will help to understand the seasonal influences of air masses on aerosol, CCN, and cloud properties over land in comparison to over ocean.

Keywords

aerosol indirect effect aerosol transport biomass burning smoke 

摘 要

气溶胶粒子对大陆和海洋上空云的发展和降水过程有十分重要的影响. 本文利用美国能源部位于大平原南部(SGP)地区的大气辐射观测(ARM)平台的气溶胶和气象观测数据研究了大陆性云凝结核数浓度与气溶胶类型及其传输路径的关系. 文中介绍了 2011年 ARM-SGP所开展的中纬度大陆性对流云试验, 并将其与我们在 2009-2010 期间在 ARM 北大西洋东部站点所开展的海洋边界层云, 气溶胶和降水试验得到的研究结果进行了对比. SGP 地区盛行北风时气溶胶散射系数(σsp)不足 20 Mm−1, NCCN值不足 100 cm−3, 表现为清洁的大陆性特征. 但是, 当 SGP 地区盛行南风时可观测到气溶胶含量(σsp > 60 Mm−1)与 NCCN, 含碳化合物(生物质燃烧烟尘)以及可降雨水汽量呈中度或高度相关(R), 该结果表明烟尘气溶胶和水汽存在经由墨西哥湾传输这种共同的传输机制, 且对气团类型有很强的依赖性. NASA MERRA-2 的气溶胶和化学组分再分析数据与 ARM-SGP 地面观测数据呈中度或高度相关, 表明该数据可以反应 SGP 地区的地面气溶胶情况, 尤其是经由墨西哥湾输送期间高浓度的气溶胶状况. 未来通过和海洋状况的长期比较研究将有助于深入理解大陆上空气团对气溶胶, CCN 和云的季节性影响.

关键词

气溶胶间接效应 气溶胶输送 生物质燃烧烟尘 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The surface aerosol data were obtained from the ARM Program sponsored by the U.S. DOE Office of Energy Research, Office of Health and Environmental Research, and Environmental Sciences Division. The meteorological data for Figs. 1–3 were obtained from the NOAA ESRL Physical Sciences Division in Boulder, Colorado (http://www.esrl.noaa.gov/psd/). The authors wish to thank the scientists at the DOE ARM-SGP site for maintaining the data used in this study. Analyses and visualizations used in this paper were produced with the NASA Giovanni online data system, developed and maintained by the NASA GES DISC (found at http://giovanni.gsfc.nasa.gov/giovanni/). The authors deeply appreciate the comments and suggestions from the anonymous reviewers of this manuscript. This research was supported by National Science Foundation Collaborative Research under the award number AGS-1700728 at the University of Arizona and AGS-1700796 at Texas A&M University.

References

  1. Anderson, T. L., and J. A. Ogren, 1998: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer. Aerosol Science and Technology, 29, 57–69, https://doi.org/10.1080/02786829808965551.CrossRefGoogle Scholar
  2. Bergin, M. H., 2000: Aerosol radiative properties and their impacts. From Weather Forecasting to Exploring the Solar System, C. Boutron, Ed., EDP Sciences, 51–65.Google Scholar
  3. Buchard, V., and Coauthors, 2015: Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis. Atmos. Chem. Phys., 15, 5743–5760, https://doi.org/10.5194/acp-15-5743-2015.CrossRefGoogle Scholar
  4. Camponogara, G., M. A. F. Silva Dias, and G. G. Carrió, 2014: Relationship between Amazon biomass burning aerosols and rainfall over the La Plata Basin. Atmos. Chem. Phys., 14, 4397–4407, https://doi.org/10.5194/acp-14-4397-2014.CrossRefGoogle Scholar
  5. Dong, X. Q., P. Minnis, T. P. Ackerman, E. E. Clothiaux, G. G. Mace, C. N. Long, and J. C. Liljegren, 2000: A 25-month database of stratus cloud properties generated from groundbased measurements at the Atmospheric Radiation Measurement Southern Great Plains Site. J. Geophys. Res., 105, 4529–4537, https://doi.org/10.1029/1999JD901159.CrossRefGoogle Scholar
  6. Dong, X. Q., P. Minnis, and B. K. Xi, 2005: A climatology of midlatitude continental clouds from the ARM SGP central facility: Part I: Low-level cloud macrophysical, microphysical, and radiative properties. J. Climate, 18, 1391–1410, https://doi.org/10.1175/JCLI3342.1.CrossRefGoogle Scholar
  7. Dong, X. Q., B. K. Xi, and P. Minnis, 2006: A climatology of midlatitude continental clouds from the ARM SGP central facility. Part II: Cloud fraction and surface radiative forcing. J. Climate, 19, 1765–1783, https://doi.org/10.1175/JCLI3710.1.CrossRefGoogle Scholar
  8. Dong, X. Q., B. K. Xi, A. Kennedy, P. Minnis, and R. Wood, 2014: A 19-month record of marine aerosol-cloud-radiation properties derived from DOE ARM mobile facility deployment at the Azores. Part I: Cloud fraction and single-layered MBL cloud properties. J. Climate, 27, 3665–3682, https://doi.org/10.1175/JCLI-D-13-00553.1.CrossRefGoogle Scholar
  9. Dong, X. Q., A. C. Schwantes, B. K. Xi, and P. Wu, 2015: Investigation of the marine boundary layer cloud and CCN properties under coupled and decoupled conditions over the Azores. J. Geophys. Res., 120, 6179–6191, https://doi.org/10.1002/2014JD022939.Google Scholar
  10. Draxler, R. R., and G. D. Rolph, 2013: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring, MD. [Available online from http://ready.arl.noaa.gov/HYSPLIT.php]Google Scholar
  11. Fan, J.W., and Coauthors, 2015: Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics. J. Geophys. Res., 120, 3485–3509, https://doi.org/10.1002/2014JD022142.Google Scholar
  12. Graf, H.-F., J. Yang, and T. M. Wagner, 2009: Aerosol effects on clouds and precipitation during the 1997 smoke episode in Indonesia. Atmos. Chem. Phys., 9, 743–756, https://doi.org/10.5194/acp-9-743-2009.CrossRefGoogle Scholar
  13. Guo, X. L., D. H. Fu, X. Guo, and C. M. Zhang, 2014: A case study of aerosol impacts on summer convective clouds and precipitation over northern China. Atmos. Res., 142, 142–157, https://doi.org/10.1016/j.atmosres.2013.10.006.CrossRefGoogle Scholar
  14. Hudson, J. G., and S. Noble, 2014: CCN and vertical velocity influences on droplet concentrations and supersaturations in clean and polluted stratus clouds. J. Atmos. Sci., 71, 312–331, https://doi.org/10.1175/JAS-D-13-086.1.CrossRefGoogle Scholar
  15. Hudson, P. K., and Coauthors, 2004: Biomass-burning particle measurements: Characteristic composition and chemical processing. J. Geophys. Res., 109, D23S27, https://doi.org/10.1029/2003JD004398.CrossRefGoogle Scholar
  16. Jefferson, A., 2011: Aerosol Observing System (AOS) handbook. Tech. Rep. DOE/SC-ARM/TR-014, U.S. Department of Energy, Washington, D. C.Google Scholar
  17. Jensen, M. P., and Coauthors, 2016: The midlatitude continental convective clouds experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 1667–1686, https://doi.org/10.1175/BAMS-D-14-00228.1.CrossRefGoogle Scholar
  18. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  19. Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, https://doi.org/10.1029/2005GL023187.CrossRefGoogle Scholar
  20. Kreidenweis, S. M., L. A. Remer, R. Bruintjes, and O. Dubovik, 2001: Smoke aerosol from biomass burning in Mexico: Hygroscopic smoke optical model. J. Geophys. Res., 106, 4831–4844, https://doi.org/10.1029/2000JD900488.CrossRefGoogle Scholar
  21. Leng, C., and Coauthors, 2014: Variations of cloud condensation nuclei (CCN) and aerosol activity during fog–haze episode: A case study from Shanghai. Atmos. Chem. Phys., 14, 12 499–12 512, https://doi.org/10.5194/acp-14-12499-2014.CrossRefGoogle Scholar
  22. Li, Z. Q., F. Niu, J. W. Fan, Y. G. Liu, D. Rosenfeld, and Y. N. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888–894, https://doi.org/10.1038/ngeo1313.CrossRefGoogle Scholar
  23. Liljegren, J. C., E. E. Clothiaux, G. G. Mace, S. Kato, and X. Q. Dong, 2001: A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. J. Geophys. Res., 106, 14 485–14 500, https://doi.org/10.1029/2000JD900817.CrossRefGoogle Scholar
  24. Liu, J. J., and Z. Q. Li, 2014: Estimation of cloud condensation nuclei concentration from aerosol optical quantities: Influential factors and uncertainties. Atmos. Chem. Phys., 14, 471–483, https://doi.org/10.5194/acp-14-471-2014.CrossRefGoogle Scholar
  25. Logan, T., B. K. Xi, X. Q. Dong, R. Obrecht, Z. Q. Li, and M. Cribb, 2010: A study of Asian dust plumes using satellite, surface, and aircraft measurements during the INTEX-B field experiment. J. Geophys. Res., 115, D00K25, https://doi.org/10.1029/2010JD014134.CrossRefGoogle Scholar
  26. Logan, T., B. K. Xi, and X. Q. Dong, 2014: Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores. J. Geophys. Res., 119, 4859–4872, https://doi.org/10.1002/2013JD021288.Google Scholar
  27. Lyons, W. A., T. E. Nelson, E. R. Williams, J. A. Cramer, and T. R. Turner, 1998: Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires. Science, 282, 77–80, https://doi.org/10.1126/science.282.5386.77.CrossRefGoogle Scholar
  28. McCarty, W., D. Considine, T. Lee, C. Randles, L. Coy, K. Wargan, M. Bosilovich, and R. Gelaro, 2015: Use of Satellite Observations in NASA Reanalyses: MERRA-2 and Future Plans. Tech. Rep. NASA CGMS-43 NASA-WP-06, v1, 1–15.Google Scholar
  29. Ng, N. L., and Coauthors, 2011: An aerosol chemical speciation monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol. Aerosol Science and Technology, 45, 780–794, https://doi.org/10.1080/02786826.2011.560211.CrossRefGoogle Scholar
  30. Penner, J. E., X. Q. Dong, and Y. Chen, 2004: Observational evidence of a change in radiative forcing due to the indirect aerosol effect. Nature, 427, 231–234, https://doi.org/10.1038/nature02234.CrossRefGoogle Scholar
  31. Peppler, R. A., and Coauthors, 2000: ARM southern Great Plains site observations of the smoke pall associated with the 1998 Central American fires. Bull. Amer. Meteor. Soc., 81, 2563–2591, https://doi.org/10.1175/1520-0477(2000)081<2563:ASGPSO>2.3.CO;2.CrossRefGoogle Scholar
  32. Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007.CrossRefGoogle Scholar
  33. Reid, J. S., and P. V. Hobbs, 1998: Physical and optical properties of young smoke from individual biomass fires in Brazil. J. Geophys. Res., 103, 32 013–32 030, https://doi.org/10.1029/98JD00159.CrossRefGoogle Scholar
  34. Rolph, G. D., 2012: Real-time Environmental Applications and Display sYstem (READY) Website (Available online from http://ready.arl.noaa. gov). NOAA Air Resources Laboratory, Silver Spring, MD.Google Scholar
  35. Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 3105–3108, https://doi.org/10.1029/1999GL006066.CrossRefGoogle Scholar
  36. Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606.CrossRefGoogle Scholar
  37. Saide, P. E., and Coauthors, 2015: Central American biomass burning smoke can increase tornado severity in the U.S. Geophys. Res. Lett., 42, 956–965, https://doi.org/10.1002/2014GL062826.CrossRefGoogle Scholar
  38. Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1.CrossRefGoogle Scholar
  39. Tao, W.-K., J.-P. Chen, Z. Q. Li, C. E. Wang, and C. D. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369.CrossRefGoogle Scholar
  40. Tao, W.-K., and Coauthors, 2013: Precipitation intensity and variation during MC3E: A numerical modeling study. J. Geophys. Res., 118, 7199–7218, https://doi.org/10.1002/jgrd.50410.Google Scholar
  41. Uin, J., 2016: Cloud condensation nuclei particle counter instrument handbook. DOE/SC-ARM-TR-168, 1–9.Google Scholar
  42. Wang, J., S. C. van den Heever, and J. S. Reid, 2009: A conceptual model for the link between Central American biomass burning aerosols and severe weather over the south central United States. Environ. Res. Lett., 4, 015003, https://doi.org/10.1088/1748-9326/4/1/015003.CrossRefGoogle Scholar
  43. Wang, J. Y., X. Q. Dong, B. K. Xi, and A. J. Heymsfield, 2016: Investigation of liquid cloud microphysical properties of deep convective systems: 1. Parameterization raindrop size distribution and its application for stratiform rain estimation. J. Geophys. Res., 121, 10 739–10 760, https://doi.org/10.1002/2016JD024941.Google Scholar
  44. Wood, R., and Coauthors, 2015: Clouds, aerosols, and precipitation in the marine boundary layer: An arm mobile facility deployment. Bull. Amer. Meteor. Soc., 96, 419–440, https://doi.org/10.1175/BAMS-D-13-00180.1.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Atmospheric SciencesTexas A&M UniversityCollege StationUSA
  2. 2.Department of Hydrology and Atmospheric SciencesUniversity of ArizonaTucsonUSA

Personalised recommendations