Skip to main content
Log in

Modulation of the Aleutian–Icelandic low seesaw and its surface impacts by the Atlantic Multidecadal Oscillation

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Early studies suggested that the Aleutian–Icelandic low seesaw (AIS) features multidecadal variation. In this study, the multidecadal modulation of the AIS and associated surface climate by the Atlantic Multidecadal Oscillation (AMO) during late winter (February–March) is explored with observational data. It is shown that, in the cold phase of the AMO (AMO|−), a clear AIS is established, while this is not the case in the warm phase of the AMO (AMO|+). The surface climate over Eurasia is significantly influenced by the AMO’s modulation of the Aleutian low (AL). For example, the weak AL in AMO|− displays warmer surface temperatures over the entire Far East and along the Russian Arctic coast and into Northern Europe, but only over the Russian Far East in AMO|+. Similarly, precipitation decreases over central Europe with the weak AL in AMO|−, but decreases over northern Europe and increases over southern Europe in AMO|+.

The mechanism underlying the influence of AMO|− on the AIS can be described as follows: AMO|− weakens the upward component of the Eliassen–Palm flux along the polar waveguide by reducing atmospheric blocking occurrence over the Euro–Atlantic sector, and hence drives an enhanced stratospheric polar vortex. With the intensified polar night jet, the wave trains originating over the central North Pacific can propagate horizontally through North America and extend into the North Atlantic, favoring an eastward-extended Pacific–North America–Atlantic pattern, and resulting in a significant AIS at the surface during late winter.

摘要

早期研究表明了阿留申-冰岛低压振荡的多年代际变化, 本文主要利用观测资料揭示了北大西洋多年代际振荡(AMO)对后冬(2-3月)阿留申-冰岛低压振荡、以及相关地表气候的多年代际调制作用. 结果表明, 只有在AMO冷位相的背景下, 显著的阿留申-冰岛低压振荡才会形成. AMO对阿留申低压的调制作用对欧亚地表气候有显著影响, 比如, 在AMO冷位相背景下, 弱的阿留申低压对应整个东亚地区、以及从俄罗斯北极沿岸到欧洲北部的气温偏高;而在AMO暖位相时, 暖异常只出现在俄罗斯远东地区. 类似地, AMO冷位相对弱阿留申低压的调制, 使得欧洲中部降水减少;而在AMO暖位相的调制下, 欧洲北部降水减少、南部降水增多.

AMO冷位相影响阿留申-冰岛低压振荡的机制解释如下:AMO冷位相通过减少欧洲-北大西洋大气阻塞的发生频次, 使得通过极地波导向上传播的行星波减弱, 平流层极涡加强. 因此, 由于极夜急流的加强, 从北太平洋中部激发的波列可以从北美传播到北大西洋, 有助于向东延伸的太平洋-北美-大西洋型的形成. 最终, 在后冬出现显著的阿留申-冰岛低压振荡.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004. J. Climate, 19, 5816–5842, https://doi.org/10.1175/JCLI3937.1.

    Article  Google Scholar 

  • Andrews, D. G., 1987: On the interpretation of the eliassen-palm flux divergence. Quart. J. Roy. Meteor. Soc., 113(475), 323–338, https://doi.org/10.1002/qj.49711347518.

    Article  Google Scholar 

  • Castanheira, J. M., and H.-F. Graf, 2003: North Pacific-North Atlantic relationships under stratospheric control? J. Geophys. Res., 108, ACL 11-1–ACL 11-10, https://doi.org/10.1029/2002JD002754.

    Google Scholar 

  • Dickinson, R. E., 1968: Planetary Rossby waves propagating vertically through weak westerly wind wave guides. J. Atmos. Sci., 25, 984–1002, https://doi.org/10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2.

    Article  Google Scholar 

  • Garreaud, R. D., 2007: Precipitation and circulation covariability in the extratropics. J. Climate, 20(18), 4789–4797, https://doi.org/10.1175/JCLI4257.1.

    Article  Google Scholar 

  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011: Atmospheric blocking and Atlantic Multidecadal Ocean variability. Science, 334, 655–659, https://doi.org/10.1126/science.1205683.

    Article  Google Scholar 

  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observationsthe CRU TS3.10 Dataset. International Journal of Climatology, 34(3), 623–642, https://doi.org/10.1002/joc.3711.

    Article  Google Scholar 

  • Honda, M., and H. Nakamura, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part II: Its significance in the interannual variability over the wintertime Northern Hemisphere. J. Climate, 14, 4512–4529, https://doi.org/10.1175/1520-0442(2001)014<4512:ISBTAA>2.0.CO;2.

    Article  Google Scholar 

  • Honda, M., H. Nakamura, J. Ukita, I. Kousaka, and K. Takeuchi, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part I: Seasonal dependence and life cycle. J. Climate, 14, 1029–1042, https://doi.org/10.1175/1520-0442(2001)014<1029:ISBTAA>2.0.CO;2.

    Article  Google Scholar 

  • Honda, M., Y. Kushnir, H. Nakamura, S. Yamane, and S. E. Zebiak, 2005a: Formation, mechanisms, and predictability of the Aleutian-Icelandic low seesaw in ensemble AGCM simulations. J. Climate, 18, 1423–1434, https://doi.org/10.1175/JCLI3353.1.

    Article  Google Scholar 

  • Honda, M., S. Yamane, and H. Nakamura, 2005b: Impacts of the Aleutian-Icelandic low seesaw on surface climate during the twentieth century. J. Climate, 18(14), 2793–2802, https://doi.org/10.1175/JCLI3419.1.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856-1991. J. Geophys. Res., 103, 18 567–18 589, https://doi.org/10.1029/97JC01736.

    Article  Google Scholar 

  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 1984–1986, https://doi.org/10.1126/science.288.5473.1984.

    Article  Google Scholar 

  • Li, S. L., and G. T. Bates, 2007: Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv. Atmos. Sci., 24(1), 126–135, https://doi.org/10.1007/s00376-007-0126-6.

    Article  Google Scholar 

  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109, 4074–4079, https://doi.org/10.1073/pnas.1114910109.

    Article  Google Scholar 

  • Lu, R. Y., B. W. Dong, and H. Ding, 2006: Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys. Res. Lett., 33(24), https://doi.org/10.1029/2006GL027655.

    Google Scholar 

  • Nakamura, H., and M. Honda, 2002: Interannual seesaw between the Aleutian and Icelandic lows Part III: Its influence upon the stratospheric variability. J. Meteor. Soc. Japan, 80(4B), 1051–1067, https://doi.org/10.2151/jmsj.80.1051.

    Article  Google Scholar 

  • Nishii, K., H. Nakamura, and Y. J. Orsolini, 2011: Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation. J. Climate, 24(24), 6408–6423, https://doi.org/10.1175/JCLI-D-10-05021.1.

    Article  Google Scholar 

  • Omrani, N.-E., N. S. Keenlyside, J. Bader, and E. Manzini, 2014: Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Climate Dyn., 42, 649–663, https://doi.org/10.1007/s00382-013-1860-3.

    Article  Google Scholar 

  • Orsolini, Y. J., 2004: Seesaw fluctuations in ozone between the North Pacific and North Atlantic. J. Meteor. Soc. Japan, 82(3), 941–949, https://doi.org/10.2151/jmsj.2004.941.

    Article  Google Scholar 

  • Orsolini, Y. J., N. G. Kvamstø, I. T. Kindem, M. Honda, and H. Nakamura, 2008: Influence of the Aleutian-Icelandic low seesaw and ENSO onto the Stratosphere in ensemble winter hindcasts. J. Meteor. Soc. Japan, 86(5), 817–825, https://doi.org/10.2151/jmsj.86.817.

    Article  Google Scholar 

  • Peings, Y., and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean. Environmental Research Letters, 9(3), 034018, https://doi.org/10.1088/1748-9326/9/3/034018.

    Article  Google Scholar 

  • Peings, Y., and G. Magnusdottir, 2016: Wintertime atmospheric response to Atlantic multidecadal variability: Effect of stratospheric representation and ocean-atmosphere coupling. Climate Dyn., 47, 1029–1047, https://doi.org/10.1007/s00382-015-2887-4.

    Article  Google Scholar 

  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217–229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    Article  Google Scholar 

  • Reichler, T., J. Kim, E. Manzini, and J. Kröger, 2012: A stratospheric connection to Atlantic climate variability. Nature Geoscience, 5(11), 783–787, https://doi.org/10.1038/ngeo1586.

    Article  Google Scholar 

  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2015: GPCC Full Data Reanalysis Version 7.0 at 1.0°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS based and Historic Data, https://doi.org/10.5065/D6000072.

    Google Scholar 

  • Sun, J., and B. Tan, 2013: Mechanism of the wintertime Aleutian low-Icelandic low seesaw. Geophys. Res. Lett., 40(15), 4103–4108, https://doi.org/10.1002/grl.50770.

    Article  Google Scholar 

  • Tang, Q. H., X. J. Zhang, X. H. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters, 8(1), 014036, https://doi.org/10.1088/1748-9326/8/1/014036.

    Article  Google Scholar 

  • Thompson, D. W. J, and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293(5527), 85–89, https://doi.org/10.1126/science.1058958.

    Article  Google Scholar 

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review, 109(4), 784–812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Research Council of Norway (Grant Nos. EPOCASA #229774/E10 and SNOWGLACE #244166), the National Natural Science Foundation of China (Grant No. 41605059), and the Young Talent Support Plan launched by the China Association for Science and Technology (Grant No. 2016QNRC001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Orsolini, Y.J., Wang, H. et al. Modulation of the Aleutian–Icelandic low seesaw and its surface impacts by the Atlantic Multidecadal Oscillation. Adv. Atmos. Sci. 35, 95–105 (2018). https://doi.org/10.1007/s00376-017-7028-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7028-z

Key words

关键词

Navigation