Advances in Atmospheric Sciences

, Volume 34, Issue 12, pp 1472–1482 | Cite as

Microphysical processes of a stratiform precipitation event over eastern China: analysis using micro rain radar data

Original Paper


Data collected using the micro rain radar (MRR) situated in Jinan city, eastern China, were used to explore the altitudinal and temporal evolution of rainfall microphysical characteristics, and to analyze the bright band (BB) characteristics and hydrometeor classification. Specifically, a low-intensity and stable stratiform precipitation event that occurred from 0000 to 0550 UTC 15 February 2015 and featured a BB was studied. During this event, the rainfall intensity was less than 2 mm h−1 at a height of 300 m, which was above the radar site level, so the errors caused by the vertical air motion could be ignored. The freezing height from the radiosonde matched well with the top of the BB observed by the MRR. It was also found that the number of 0.5–1 mm diameter drops showed no noticeable variation below the BB. The maximum fall velocity and the maximum gradient fall velocity (GFV) of the raindrops appeared at the bottom of the BB. Meanwhile, a method that uses the GFV and reflectivity to identify the altitude and the thickness of the BB was established, with which the MRR can provide a reliable and real-time estimation of the 0°C isotherm. The droplet fall velocity was used to classify the types of snow crystals above the BB. In the first 20 min of the selected precipitation event, graupel prevailed above the BB; and at an altitude of 2000 m, graupel also dominated in the first 250 min. After 150 min, the existence of graupel and dendritic crystals with water droplets above the BB was inferred.

Key words

drop size distribution micro rain radar bright band microphysical processes 


本文利用济南的微降水雷达数据分析降水微物理参数随时间和空间的演变, 分析零度层亮带特征, 判断零度层亮带以上粒子的相态. 选取2015年2月15日00时00分至05时50分(世界时)发生在济南地区一次小雨强、稳定的层状云降水为例来分析. 在此次降水过程中, 300 m高度上的雨强均小于2 mm h-1, 由垂直气流造成的影响可以忽略. 微降水雷达观测的零度层亮带顶的高度与探空0℃的高度有很好的一致性. 零度层亮带以下直径为0.5—1 mm的粒子数量没有明显的变化. 粒子最大下落速度和最大下落速度梯度出现在零度层亮带的底部, 提出用下落速度梯度和雷达反射率因子来判断零度层亮带的高度和厚度, 这种方法可以用来实时监测0℃层. 同时, 利用粒子的下落速度来判断零度层亮带以上粒子的相态. 在选取的降水个例的前20分钟, 零度层亮带以上霰粒子丰富; 在2000 m高度上, 前250分钟都是霰粒子占主导地位; 150分钟后, 为霰和附冻滴冰晶的混合状态.


雨滴谱 微降水雷达 零度层亮带 微物理过程 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was sponsored by the National Natural Science Foundation of China (Grant Nos. 41475028 and 41530427). The authors are grateful to ShandongWeather Modification Office, China, for assisting with maintaining the MRR instrument. The authors also wish to thank Dianli GONG, Dianguo ZHANG, Liming ZHOU and Qiuchen ZHANG for selecting and preparing the MRR data.


  1. Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 1–35, doi: 10.1029/RG011i001p00001.CrossRefGoogle Scholar
  2. Atlas, D., C.W. Ulbrich, F. D. Marks, R. A. Black, E. Amitai, P. T. Willis, and C. E. Samsury, 2000: Partitioning tropical oceanic convective and stratiform rains by draft strength. J. Geophys. Res., 105, 2259–2267, doi: 10.1029/1999JD901009.CrossRefGoogle Scholar
  3. Brandes, E. A., G. F. Zhang, and J. Vivekanandan, 2004: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43, 461–475, doi: 10.1175/1520-0450(2004)043<0461:DSDRWP>2.0.CO;2.CrossRefGoogle Scholar
  4. Cha, J.-W., K.-H. Chang, S. S. Yum, and Y.-J. Choi, 2009: Comparison of the bright band characteristics measured by micro rain radar (MRR) at a mountain and a coastal site in South Korea. Adv. Atmos. Sci., 26, 211–221, doi: 10.1007/s00376-009-0211-0.CrossRefGoogle Scholar
  5. Cha, J. W., S. S. Yum, K.-H. Chang, and S. N. Oh, 2007: Estimation of the melting layer from a micro rain radar (MRR) data at the cloud physics observation system (CPOS) site at daegwallyeong weather station. Journal of the Korean Meteorological Society, 43, 77–85.Google Scholar
  6. Cifelli, R., and S. A. Rutledge, 1994: Vertical motion structure in maritime continent mesoscale convective systems: Results from a 50-Mhz profiler. J. Atmos. Sci., 51, 2631–2652, doi: 10.1175/1520-0469(1994)051<2631:VMSIMC>2.0.CO;2.CrossRefGoogle Scholar
  7. Cluckie, I. D., R. J. Griffith, A. Lane, and K. A. Tilford, 2000: Radar hydrometeorology using a vertically pointing radar. Hydrology and Earth System Sciences, 4, 565–580, doi: 10.5194/hess-4-565-2000.CrossRefGoogle Scholar
  8. Das, S., A. K. Shukla, and A. Maitra, 2010: Investigation of vertical profile of rain microstructure at Ahmedabad in Indian tropical region. Advances in Space Research, 45(10), 1235–1243, doi: 10.1016/j.asr.2010.01.001.CrossRefGoogle Scholar
  9. Doelling, I. G., J. Joss, and J. Riedl, 1998: Systematic variations of Z − R-relationships from drop size distributions measured in northern Germany during seven years. Atmospheric Research, 47-48, 635–649, doi: 10.1016/S0169-8095(98)00043-X.CrossRefGoogle Scholar
  10. Fabry, F., and T. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52(7), 838–851, doi: 10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.CrossRefGoogle Scholar
  11. Foote, G. B., and P. S. Du Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8, 249–253, doi: 10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2.CrossRefGoogle Scholar
  12. Frasson, R. P. D. M., L. K. da Cunha, and W. F. Krajewski, 2011: Assessment of the Thies optical disdrometer performance. Atmospheric Research, 101, 237–255, doi: 10.1016/j.atmosres.2011.02.014.CrossRefGoogle Scholar
  13. Gossard, E. E., R. O. Strauch, and R. R. Rogers, 1990: Evolution of dropsize distributions in liquid precipitation observed by ground-based Doppler radar. J. Atmos. Oceanic Technol., 7, 815–828, doi: 10.1175/1520-0426(1990)007<0815:EODDIL>2.0.CO;2.CrossRefGoogle Scholar
  14. Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243–248, doi: 10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.CrossRefGoogle Scholar
  15. Harikumar, R., S. Sampath, and V. S. Kumar, 2009: An empirical model for the variation of rain drop size distribution with rain rate at a few locations in southern India. Advances in Space Research, 43, 837–844, doi: 10.1016/j.asr.2008.11.001.CrossRefGoogle Scholar
  16. Harikumar, R., S. Sampath, and V. S. Kumar, 2010: Variation of rain drop size distribution with rain rate at a few coastal and high altitude stations in southern peninsular India. Advances in Space Research, 45, 576–586, doi: 10.1016/j.asr.2009.09.018.CrossRefGoogle Scholar
  17. Harikumar, R., S. Sampath, and V. S. Kumar, 2012: Altitudinal and temporal evolution of raindrop size distribution observed over a tropical station using a K-band radar. Int. J. Remote Sens., 33, 3286–3300, doi: 10.1080/01431161.2010.549853.CrossRefGoogle Scholar
  18. Hauser, D., and P. Amayenc, 1983: Exponential size distributions of raindrops and vertical air motions deduced from vertically pointing Doppler radar data using a new method. J. Climate Appl. Meteor., 22, 407–418, doi: 10.1175/1520-0450(1983)022<0407:ESDORA>2.0.CO;2.CrossRefGoogle Scholar
  19. Hu, Z. L., and R. C. Srivastava, 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 1761–1783, doi: 10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2.CrossRefGoogle Scholar
  20. Huang, Y., Z. Ruan, R. S. Ge, J. L. Ma, and L. Ji, 2013: Feature statistics on bright band in Beijing in 2010 summer. Meteorological Monthly, 39, 704–709, doi: 10.7519/j.issn.1000-0526.2013.06.006. (in Chinese)Google Scholar
  21. Kirankumar, N. V. P., and P. K. Kunhikrishnan, 2013: Evaluation of performance of Micro Rain Radar over the tropical coastal station Thumba (8.5°N, 76.9°E8). Atmospheric Research, 134, 56–63, doi: 10.1016/j.atmosres.2013.07.018.CrossRefGoogle Scholar
  22. Konwar, M., R. S. Maheskumar, S. K. Das, and S. B. Morwal, 2012: Nature of light rain during presence and absence of bright band. Journal of Earth System Science, 121, 947–961, doi: 10.1007/s12040-012-0202-x.CrossRefGoogle Scholar
  23. Low, T. B., and R. List, 1982a: Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39, 1591–1606, doi: 10.1175/1520-0469(1982)039<1591:CCABOR>2.0.CO;2.CrossRefGoogle Scholar
  24. Low, T. B., and R. List, 1982b: Collision, coalescence and breakup of raindrops. Part II: Parameterization of fragment size distributions. J. Atmos. Sci., 39, 1607–1618, doi: 10.1175/1520-0469(1982)039<1607:CCABOR>2.0.CO;2.CrossRefGoogle Scholar
  25. Maahn, M., and P. Kollias, 2012: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmospheric Measurement Techniques, 5, 2661–2673, doi: 10.5194/amt-5-2661-2012.CrossRefGoogle Scholar
  26. Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166, doi: 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.CrossRefGoogle Scholar
  27. METEK, cited 2017: MRR physical basics. Version, Metek mbH, Elmshorn, 20 pp. [Available online from 20090707.pdf]Google Scholar
  28. Muller, C. L., C. Kidd, I. J. Fairchild, and A. Baker, 2010: Investigation into clouds and precipitation over an urban area using micro rain radars, satellite remote sensing and fluorescence spectrophotometry. Atmospheric Research, 96, 241–255, doi: 10.1016/j.atmosres.2009.08.003.CrossRefGoogle Scholar
  29. Nakaya, U., and T. Terada Jr., 1935: Simultaneous observations of the mass, falling velocity and form of individual snow crystals. Journal of the Faculty of Science, Hokkaido Imperial University. Series 2, Physics, 1(7), 191–200.Google Scholar
  30. Peters, G., B. Fischer, and T. Andersson, 2002: Rain observations with a vertically looking Micro Rain Radar (MRR). Boreal Environment Research, 7, 353–362.Google Scholar
  31. Peters, G., B. Fischer, H. Münster, M. Clemens, and A. Wagner, 2005: Profiles of raindrop size distributions as retrieved by microrain radars. J. Appl. Meteor., 44, 1930–1949, doi: 10.1175/JAM2316.1.CrossRefGoogle Scholar
  32. Peters, G., B. Fischer, and M. Clemens, 2010: Rain attenuation of radar echoes considering finite-range resolution and using drop size distributions. J. Atmos. Oceanic Technol., 27, 829–842, doi: 10.1175/2009JTECHA1342.1.CrossRefGoogle Scholar
  33. Prat, O. P., and A. P. Barros, 2010: Ground observations to characterize the spatial gradients and vertical structure of orographic precipitation-Experiments in the inner region of the Great Smoky Mountains. J. Hydrol., 391, 143–156, doi: 10.1016/j.jhydrol.2010.07.013.CrossRefGoogle Scholar
  34. Ralph, F. M., P. J. Neiman, D. W. Van de Kamp, and D. C. Law, 1995: Using spectral moment data from NOAA’s 404-Mhz radar wind profilers to observe precipitation. Bull. Amer. Meteor. Soc., 76, 1717–1739, doi: 10.1175/1520-0477(1995)076<1717:USMDFN>2.0.CO;2.CrossRefGoogle Scholar
  35. Rico-Ramirez, M. A., I. D. Cluckie, and D. Han, 2005: Correction of the bright band using dual-polarisation radar. Atmospheric Science Letters, 6, 40–46, doi: 10.1002/asl.89.CrossRefGoogle Scholar
  36. Rogers, R. R., 1964: An extension of the Z − R relation for Doppler radar. Proc. World Conf. Radar Meteorology and 11th Weather Radar Conf., Boulder, CO, Amer. Meteor. Soc., 158–161.Google Scholar
  37. Roy, S. S., R. K. Datta, R. C. Bhatia, and A. K. Sharma, 2005: Drop size distributions of tropical rain over south India. Geofizika, 22, 105–130.Google Scholar
  38. Srivastava, R. C., 1971: Size distribution of raindrops generated by their breakup and coalescence. J. Atmos. Sci., 28, 410–415, doi: 10.1175/1520-0469(1971)028<0410:SDORGB>2.0.CO;2.CrossRefGoogle Scholar
  39. Srivastava, R. C., 1978: Parameterization of raindrop size distributions. J. Atmos. Sci., 35, 108–117, doi: 10.1175/1520-0469(1978)035<0108:PORSD>2.0.CO;2.CrossRefGoogle Scholar
  40. Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764–1775, doi: 10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.CrossRefGoogle Scholar
  41. Wang, L., G. R., Wang, Y. Gu, H. Y. Li, L. Ma, J. L. Guo, and L. Qiao, 2014: Application of wind profiler radar vertical radial velocity. Meteorological Monthly, 40, 290–296, doi: 10.7519/j.issn.1000-0526.2014.03.004. (in Chinese)Google Scholar
  42. Wegener, A., 1911: Investigations on the nature of the upper atmosphere strata. I. Phys Z, 12, 170–178.Google Scholar
  43. White, A. B., D. J. Gottas, E. T. Strem, F. M. Ralph, and P. J. Neiman, 2002: An automated brightband height detection algorithm for use with Doppler radar spectral moments. J. Atmos. Oceanic Technol., 19, 687–697, doi: 10.1175/1520-0426(2002)019<0687:AABHDA>2.0.CO;2.CrossRefGoogle Scholar
  44. White, A. B., P. J. Neiman, F. M. Ralph, D. E. Kingsmill, and P. O. G. Persson, 2003: Coastal orographic rainfall processes observed by radar during the California land-falling jets experiment. J. Hydrometeorol., 4, 264–282, doi: 10.1175/1525-7541(2003)4<264:CORPOB>2.0.CO;2.CrossRefGoogle Scholar
  45. Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 1648–1661, doi: 10.1175/1520-0469(1984)041<1648:FFTSOD>2.0.CO;2.CrossRefGoogle Scholar
  46. Zawadzki, I., W. Szyrmer, C. Bell, and F. Fabry, 2005: Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62, 3705–3723, doi: 10.1175/JAS3563.1.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Shandong Weather Modification OfficeJinanChina

Personalised recommendations