Advances in Atmospheric Sciences

, Volume 34, Issue 12, pp 1404–1414 | Cite as

Effects of wind fences on the wind environment around Jang Bogo Antarctic Research Station

  • Jang-Woon Wang
  • Jae-Jin Kim
  • Wonsik Choi
  • Da-Som Mun
  • Jung-Eun Kang
  • Hataek Kwon
  • Jin-Soo Kim
  • Kyung-Soo Han
Original Paper

Abstract

This study investigated the flow characteristics altered by Jang Bogo Antarctic Research Station using computational fluid dynamics (CFD) modeling. The topography and buildings around Jang Bogo Station were constructed with computer-aided-design data in the CFD model domain. We simulated 16 cases with different inflow directions, and compared the flow characteristics with and without Jang Bogo Station for each inflow direction. The wind data recorded by the site’s automatic weather station (AWS) were used for comparison. Wind rose analysis showed that the wind speed and direction after the construction of Jang Bogo Station were quite different from those before construction. We also investigated how virtual wind fences would modify the flow patterns, changing the distance of the fence from the station as well as the porosity of the fence. For westerly inflows, when the AWS was downwind of Jang Bogo Station, the decrease in wind speed was maximized (−81% for west-northwesterly). The wind speed reduction was also greater as the distance of the fence was closer to Jang Bogo Station. With the same distance, the fence with medium porosity (25%–33%) maximized the wind speed reduction. These results suggest that the location and material of the wind fence should be selected carefully, or AWS data should be interpreted cautiously, for particular prevailing wind directions.

Key words

Jang Bogo Antarctic Research Station CFD model observation environment wind fence porosity 

摘要

本研究运用计算流体力学(CFD)模式探讨韩国南极张保皋科考站的建造对周边气流特征的改变.在CFD模式中,我们运用计算机辅助制图(CAD)技术构建张保皋科考站周边的地形和建筑物特征.通过设定16种不同输入气流(盛行风)方向模拟方案,对每一方向的盛行风,对比研究张保皋科考站建造前后的风场特征.张保皋科考站的自动气象站风场数据用于模拟结果的对比分析.风玫瑰图分析揭示了张保皋科考站建造前后的风向和风速均有显著差异.通过改变虚拟的防风栅栏与张保皋科考站之间的距离以及防风栅栏的孔隙度,进一步研究防风栅栏对气流特征的影响.在盛行西风条件下,自动气象站处于张保皋科考站下风区,科考站的建造使得下风区风速达到最大程度的减小(西到西北风降低约81%).防风栅栏与张保皋科考站距离越近,风速的减小越明显.当防风栅栏与张保皋科考站距离固定,中等孔隙度(25%-33%)的防风栅栏对风速减小的作用最显著.该研究表明科考站周边防风栅栏的位置和材料结构需要慎重选择,自动气象站风场数据的分析需谨慎,尤其需要结合盛行风的方向.

关键词

南极张保皋科考站 计算流体力学(CFD)模式 观测环境 防风栅栏 孔隙度 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. This study was funded by a Korea Polar Research Institute project (PE16250). Hateak KWON is financially supported by PE17010 of Korea Polar Research Institute.

References

  1. Baik, J.-J., J.-J. Kim, and H. J. S. Fernando, 2003: A CFD model for simulating urban flow and dispersion. J. Appl. Meteor., 42, 1636–1648, doi: 10.1175/1520-0450(2003)042<1636:ACMFSU>2.0.CO;2.CrossRefGoogle Scholar
  2. Baik, J.-J., S.-B. Park, and J.-J. Kim, 2009: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. Journal of Applied Meteorology and Climatology, 48, 1667–1681, doi: 10.1175/2009JAMC2066.1.CrossRefGoogle Scholar
  3. Bromwich, D. H., 1989: An extraordinary katabatic wind regime at terra nova bay, Antarctica. Mon. Wea. Rev., 117, 688–695, doi: 10.1175/1520-0493(1989)117<0688:AEKWRA>2.0.CO;2.CrossRefGoogle Scholar
  4. Castro, I. P., and D. D. Apsley, 1997: Flow and dispersion over topography: A comparison between numerical and laboratory data for two-dimensional flows. Atmos. Environ., 31, 839–850, doi: 10.1016/S1352-2310(96)00248-8.CrossRefGoogle Scholar
  5. Cheng, J.-J., J.-Q. Lei, S.-Y. Li, and H.-F. Wang, 2016: Disturbance of the inclined inserting-type sand fence to wind-sand flow fields and its sand control characteristics. Aeolian Research, 21, 139–150, doi: 10.1016/j.aeolia.2016.04.008.CrossRefGoogle Scholar
  6. Dong, Z. B., W. Y. Luo, G. Q. Qian, and H. T. Wang, 2007: A wind tunnel simulation of the mean velocity fields behind upright porous fences. Agricultural and Forest Meteorology, 146, 82–93, doi: 10.1016/j.agrformet.2007.05.009.CrossRefGoogle Scholar
  7. Eichhorn, J., 2004: MISKAM-Handbuch zu Version 4 (with update for Version 6). Available online at http://www.lohmeyer.de/de/system/files/content/download/software/miskam6manualenglish.pdf.Google Scholar
  8. Gousseau, P., B. Blocken, T. Stathopoulos, and G. J. F. van Heijst, 2011: CFD simulation of near-field pollutant dispersion on a high-resolution grid: A case study by LES and RANS for a building group in downtown Montreal. Atmos. Environ., 45, 428–438, doi: 10.1016/j.atmosenv.2010.09.065.CrossRefGoogle Scholar
  9. Gowardhan, A. A., E. R. Pardyjak, I. Senocak, and M. J. Brown, 2011: A CFD-based wind solver for an urban fast response transport and dispersion model. Environmental Fluid Mechanics, 11, 439–464, doi: 10.1007/s10652-011-9211-6.CrossRefGoogle Scholar
  10. Hertwig, D., G. C. Efthimiou, J. G. Bartzis, and B. Leitl, 2012: CFD-RANS model validation of turbulent flow in a semiidealized urban canopy. Journal of Wind Engineering and Industrial Aerodynamics, 111, 61–72, doi: 10.1016/j.jweia.2012.09.003.CrossRefGoogle Scholar
  11. Judd, M. J., M. R. Raupach, and J. J. Finnigan, 1996: A wind tunnel study of turbulent flow around single and multiple windbreaks, Part I: Velocity fields. Bound.-Layer Meteor., 80, 127–165, doi: 10.1007/BF00119015.CrossRefGoogle Scholar
  12. Kim, J.-J., 2007: The effects of obstacle aspect ratio on surrounding flows. Atmosphere, 17, 381–391.Google Scholar
  13. Kim, J.-J., and D.-Y. Kim, 2009: Effects of a building’s density on flow in urban areas. Adv. Atmos. Sci., 26, 45–56, doi: 10.1007/s00376-009-0045-9.CrossRefGoogle Scholar
  14. Kim, J.-J., and J.-J. Baik, 2010: Effects of street-bottom and building-roof heating on flow in three-dimensional street canyons. Adv. Atmos. Sci., 27, 513–527, doi: 10.1007/s00376-009-9095-2.CrossRefGoogle Scholar
  15. Lee, S.-J., and H.-B. Kim, 1999: Laboratory measurements of velocity and turbulence field behind porous fences. Journal of Wind Engineering and Industrial Aerodynamics, 80, 311–326, doi: 10.1016/S0167-6105(98)00193-7.CrossRefGoogle Scholar
  16. Ma, Y. M., 1992: Preliminary study on vertical velocity caused by katabatic wind in Antarctica and its influence on atmospheric circulation. Adv. Atmos. Sci., 9, 247–250, doi: 10.1007/BF02657515.CrossRefGoogle Scholar
  17. Martin, P., 1995: Wind protective fences of PARAWEB compositions. Techtextil-Symposium 1995, Lecture No. 537, 1–8.Google Scholar
  18. Mitsuhashi, H., 1982: Measurements of snowdrifts and wind profiles around the huts at Syowa station in Antarctica. Antarctic Record, 75, 37–56.Google Scholar
  19. Nylen, T. H., A. G. Fountain, and P. T. Doran, 2004: Climatology of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica. J. Geophys. Res., 109, doi: 10.1029/2003JD003937.Google Scholar
  20. Stathopoulos, T., 2006: Pedestrian level winds and outdoor human comfort. Journal of Wind Engineering and Industrial Aerodynamics, 94, 769–780, doi: 10.1016/j.jweia.2006.06.011.CrossRefGoogle Scholar
  21. Tominaga, Y., A. Mochida, T. Shirasawa, R. Yoshie, H. Kataoka, K. Harimoto, and T. Nozu, 2004: Cross comparisons of CFD results of wind environment at pedestrian level around a high-rise building and within a building complex. Journal of Asian Architecture and Building Engineering, 3, 63–70, doi: 10.3130/jaabe.3.63.CrossRefGoogle Scholar
  22. Versteeg, H. K., and W. Malalasekera, 1995: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Longman, Malaysia, 257 pp.Google Scholar
  23. Wang, H., and E. S. Takle, 1996: On shelter efficiency of shelterbelts in oblique wind. Agricultural and Forest Meteorology, 81, 95–117, doi: 10.1016/0168-1923(95)02311-9.CrossRefGoogle Scholar
  24. Weber, N. J., M. A. Lazzara, L. K. Keller, and J. J. Cassano, 2016: The extreme wind events in the ross island region of Antarctica. Wea. Forecasting, 31, 985–1000, doi: 10.1175/WAF-D-15-0125.1.CrossRefGoogle Scholar
  25. Yakhot, V., S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale, 1992: Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4, 1510–1520, doi: 10.1063/1.858424.CrossRefGoogle Scholar
  26. You, K.-P., and Y.-M. Kim, 2009: Effect of protection against wind according to the variation porosity of wind fence. Environmental Geology, 56, 1193–1203, doi: 10.1007/s00254-008-1219-y.CrossRefGoogle Scholar
  27. Yu, Y., X. M. Cai, and X. S. Qie, 2007: Influence of topography and large-scale forcing on the occurrence of katabatic flow jumps in Antarctica: Idealized simulations. Adv. Atmos. Sci., 24, 819–832, doi: 10.1007/s00376-007-0819-x.CrossRefGoogle Scholar
  28. Zhang, N., J.-H. Kang, and S.-J. Lee, 2010: Wind tunnel observation on the effect of a porous wind fence on shelter of saltating sand particles. Geomorphology, 120, 224–232, doi: 10.1016/j.geomorph.2010.03.032.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jang-Woon Wang
    • 1
  • Jae-Jin Kim
    • 1
  • Wonsik Choi
    • 1
  • Da-Som Mun
    • 1
  • Jung-Eun Kang
    • 1
  • Hataek Kwon
    • 2
  • Jin-Soo Kim
    • 3
  • Kyung-Soo Han
    • 3
  1. 1.Department of Environmental Atmospheric SciencesPukyong National UniversityBusanRepublic of Korea
  2. 2.Korea Polar Research InstituteIncheonRepublic of Korea
  3. 3.Department of Spatial Information EngineeringPukyong National UniversityBusanRepublic of Korea

Personalised recommendations