Advances in Atmospheric Sciences

, Volume 34, Issue 12, pp 1395–1403 | Cite as

Contrasting the skills and biases of deterministic predictions for the two types of El Niño

  • Fei Zheng
  • Jin-Yi Yu
Original Paper


The tropical Pacific has begun to experience a new type of El Niño, which has occurred particularly frequently during the last decade, referred to as the central Pacific (CP) El Niño. Various coupled models with different degrees of complexity have been used to make real-time El Niño predictions, but high uncertainty still exists in their forecasts. It remains unknown as to how much of this uncertainty is specifically related to the new CP-type El Niño and how much is common to both this type and the conventional Eastern Pacific (EP)-type El Niño. In this study, the deterministic performance of an El Niño–Southern Oscillation (ENSO) ensemble prediction system is examined for the two types of El Niño. Ensemble hindcasts are run for the nine EP El Niño events and twelve CP El Niño events that have occurred since 1950. The results show that (1) the skill scores for the EP events are significantly better than those for the CP events, at all lead times; (2) the systematic forecast biases come mostly from the prediction of the CP events; and (3) the systematic error is characterized by an overly warm eastern Pacific during the spring season, indicating a stronger spring prediction barrier for the CP El Niño. Further improvements to coupled atmosphere–ocean models in terms of CP El Niño prediction should be recognized as a key and high-priority task for the climate prediction community.

Key words

ENSO EP El Niño CP El Niño prediction skill systematic bias spring prediction barrier 


El Niño作为全球最显著的年际变化信号, 对全球气候和环境均有着重要影响。近年来, 因其最大的年际异常信号主要集中在中太平洋区域, 且出现频率明显增加, 一种新的中太平洋型(CP型)El Niño现象引起了广泛的关注。过去研究主要集中在区分新的CP型El Niño事件与传统的东太平洋型(EP型)El Niño事件对全球各个区域不同的影响, 但是对于两类El Niño事件预测技巧存在的差异及其原因并未给出较好的解释。中国科学院大气物理研究所郑飞研究员和美国加州大学欧文分校Jin-Yi Yu教授, 基于大气所ENSO集合预测系统检验1950年以来的El Niño事件预测水平, 合作发现两类El Niño事件在预测技巧上存在着明显差异, 即系统对CP型El Niño事件的预测能力相比EP型事件明显偏弱。进一步的分析发现, CP型事件预测技巧偏弱有两个可能的原因制约: (1) 模型的预测偏差主要来源于其对CP型El Niño事件的预测; (2) 这一预测偏差主要体现为对CP型El Niño事件预测的春季暖偏差, 同时也与CP型事件的“春季预报障碍”更严重紧密联系。


ENSO EP El Niño CP El Niño 预测能力 偏差 春季预报障碍 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank the two anonymous reviewers for their very helpful comments and suggestions. This work was supported by the National Program for Support of Top-notch Young Professionals, and the National Natural Science Foundation of China (Grant No. 41576019). J.-Y. YU was supported by the US National Science Foundation (Grant No. AGS-150514).

Supplementary material

376_2017_6324_MOESM1_ESM.pdf (83 kb)
Electronic Supplementary Material to: Contrasting the Skills and Biases of Deterministic Predictions for the Two Types of El Niño


  1. Ashok, K., and T. Yamagata, 2009: Climate change: The El Niño with a difference. Nature, 461, 481–484, doi: 10.1038/461481a.CrossRefGoogle Scholar
  2. Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi: 10.1029/2006JC003798.CrossRefGoogle Scholar
  3. Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. H. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631–651, doi: 10.1175/BAMSD-11-00111.1.CrossRefGoogle Scholar
  4. Chen, D. K., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. J. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733–736, doi: 10.1038/nature02439.CrossRefGoogle Scholar
  5. Delecluse, P., M. K. Davey, Y. Kitamura, S. G. H. Philander, M. Suarez, and L. Bengtsson, 1998: Coupled general circulation modeling of the tropical Pacific. J. Geophys. Res., 103, 14 357–14 373, doi: 10.1029/97JC02546.CrossRefGoogle Scholar
  6. Duan, W. S., and P. Zhao, 2015: Revealing the most disturbing tendency error of Zebiak-Cane model associated with El Niño predictions by nonlinear forcing singular vector approach. Climate Dyn., 44, 2351–2367, doi: 10.1007/s00382-014-2369-0.CrossRefGoogle Scholar
  7. Fang, X.-H., F. Zheng, and J. Zhu, 2015: The cloud radiative effect when simulating strength asymmetry in two types of El Niño events using CMIP5 models. J. Geophys. Res., 120(6), 4357–4369, doi: 10.1002/2014JC010683.CrossRefGoogle Scholar
  8. Feng, L. S., F. Zheng, J. Zhu, and H. W. Liu, 2015: The role of stochastic model error perturbations in predicting the 2011/12 double-dip La Niña. SOLA, 11, 65–69, doi: 10.2151/sola.2015-014.CrossRefGoogle Scholar
  9. Imada, Y., H. Tatebe, M. Ishii, Y. Chikamoto, M. Mori, M. Arai, M. Watanabe, and M. Kimoto, 2015: Predictability of two types of El Niño assessed using an extended seasonal prediction system by MIROC. Mon. Wea. Rev., 143, 4597–4617, doi: 10.1175/MWR-D-15-0007.1CrossRefGoogle Scholar
  10. Jeong, H.-I., and Coauthors, 2012: Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Climate Dyn., 39, 475–493, doi: 10.1007/s00382-012-1359-3.CrossRefGoogle Scholar
  11. Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Climate Dyn., 31(6), 647–664, doi: 10.1007/s00382-008-0397-3.CrossRefGoogle Scholar
  12. Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632, doi: 10.1175/2008JCLI2309.1.CrossRefGoogle Scholar
  13. Karspeck, A. R., A. Kaplan, and M. A. Cane, 2006: Predictability loss in an intermediate ENSO model due to initial error and atmospheric noise. J. Climate, 19(15), 3572–3588, doi: 10.1175/JCLI3818.1.CrossRefGoogle Scholar
  14. Keenlyside, N., and R. Kleeman, 2002: Annual cycle of equatorial zonal currents in the Pacific. J. Geophys. Res., 107, 3093, doi: 10.1029/2000JC000711.CrossRefGoogle Scholar
  15. Kirtman, B. P., J. Shukla, M. Balmaseda, N. Graham, C. Penland, Y. Xue, and S. Zebiak, 2001: Current status of ENSO forecast skill: A report to the Climate Variability and Predictability (CLIVAR) Working Group on Seasonal to Interannual Prediction. WCRP Informal Report No. 23/01, 31pp.Google Scholar
  16. Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103(C7), 14 375–14 393, doi: 10.1029/97JC03413.CrossRefGoogle Scholar
  17. Luo, J.-J., C.-X. Yuan, W. Sasaki, Y. Masumoto, T. Yamagata, J.-Y. Lee, and S. Masson, 2016: Current status of intraseasonalseasonal-to-interannual prediction of the Indo-Pacific climate. The Indo-Pacific Climate Variability and Predictability, T. Yamagata, and S. Behera, Eds., The World Scientific Publisher, doi: 10.1142/97898146966230003.Google Scholar
  18. McPhaden, M. J., and X. R. Yu, 1999: Equatorial waves and the 1997-98 El Niño. Geophys. Res. Lett., 26, 2961–2964, doi: 10.1029/1999GL004901.CrossRefGoogle Scholar
  19. McPhaden, M. J., and Coauthors, 1998: The tropical ocean-global atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 169–14 240, doi: 10.1029/97JC02906.CrossRefGoogle Scholar
  20. McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 1740–1745, doi: 10.1126/science.1132588.CrossRefGoogle Scholar
  21. McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, doi: 10.1029/2011GL048275.CrossRefGoogle Scholar
  22. Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122, 1405–1446, doi: 10.1002/qj.49712253409.CrossRefGoogle Scholar
  23. Picaut, J., E. Hackert, A. J. Busalacchi, R. Murtugudde, and G. S. E. Lagerloef, 2002: Mechanisms of the 1997-1998 El Niño-La Niña, as inferred from space-based observations. J. Geophys. Res., 107, 3037, doi: 10.1029/2001JC000850.CrossRefGoogle Scholar
  24. Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi: 10.1029/2010GL046031.CrossRefGoogle Scholar
  25. Röckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Report No. 218, Max-Planck-Institut für Meteorologie, Hamburg, 90pp.Google Scholar
  26. Schneider, E. K., B. P. Kirtman, D. G. DeWitt, A. Rosati, L. Ji, and J. J. Tribbia, 2003: Retrospective ENSO forecasts: Sensitivity to atmospheric model and ocean resolution. Mon. Wea. Rev., 131, 3038–3060, doi: 10.1175/1520-0493(2003)131<3038:REFSTA>2.0.CO;2.CrossRefGoogle Scholar
  27. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). J. Climate, 21, 2283–2296, doi: 10.1175/2007JCLI2100.1.CrossRefGoogle Scholar
  28. Wang, W. Q., M. Y. Chen, and A. Kumar, 2010: An assessment of the CFS real-time seasonal forecasts. Wea. Forecasting, 25, 950–969, doi: 10.1175/2010WAF2222345.1.CrossRefGoogle Scholar
  29. Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926.CrossRefGoogle Scholar
  30. Yang, S., and X. W. Jiang, 2014: Prediction of eastern and central Pacific ENSO events and their impacts on East Asian climate by the NCEP Climate Forecast System. J. Climate, 27, 4451–4472, doi: 10.1175/JCLI-D-13-00471.1.CrossRefGoogle Scholar
  31. Yeh, S.-W., J.-S. Kug, and S.-I. An, 2014: Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pac. J. Atmos. Sci., 50, 69–81.CrossRefGoogle Scholar
  32. Yu, J. Y., and H. Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001. J. Geophys. Res., 112, D13106, doi: 10.1029/2006JD007654.CrossRefGoogle Scholar
  33. Yu, J.-Y., and S. T. Kim, 2013: Identifying the types of major El Niño events since 1870. International Journal of Climatology, 33, 2105–2112, doi: 10.1002/joc.3575.CrossRefGoogle Scholar
  34. Yu, J.-Y., H.-Y. Kao, and T. Lee, 2010: Subtropics-related Interannual sea surface temperature variability in the central equatorial Pacific. J. Climate, 23, 2869–2884, doi: 10.1175/2010JCLI3171.1.CrossRefGoogle Scholar
  35. Yu, J.-Y., Y. H. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, doi: 10.1029/2012GL052483.CrossRefGoogle Scholar
  36. Yu, J.-Y., X. Wang, S. Yang, H. Paek, and M. Chen, 2017: The changing El Niño–Southern Oscillation and associated climate extremes. Climate Extremes: Patterns and Mechanisms, S. Wang et al., Eds., John Wiley & Sons, Inc., Hoboken, NJ, USA, 1–38 pp, doi: 10.1002/9781119068020.ch1.Google Scholar
  37. Zhang, R.-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2005: Retrospective El Niño forecasts using an improved intermediate coupled model. Mon. Wea. Rev., 133, 2777–2802, doi: 10.1175/MWR3000.1.CrossRefGoogle Scholar
  38. Zheng, F., and J. Zhu, 2008: Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation. J. Geophys. Res., 113, C07002, doi: 10.1029/2007JC004621.Google Scholar
  39. Zheng, F., and J. Zhu, 2010a: Coupled assimilation for an intermediated coupled ENSO prediction model. Ocean Dyn., 60, 1061–1073, doi: 10.1007/s10236-010-0307-1.CrossRefGoogle Scholar
  40. Zheng, F., and J. Zhu, 2010b: Spring predictability barrier of ENSO events from the perspective of an ensemble prediction system. Global and Planetary Change, 72, 108–117, doi: 10.1016/j.gloplacha.2010.01.021.CrossRefGoogle Scholar
  41. Zheng, F., and R.-H. Zhang, 2012: Effects of interannual salinity variability and freshwater flux forcing on the development of the 2007/08 La Niña event diagnosed from Argo and satellite data. Dyn. Atmos. Oceans, 57, 45–57, doi: 10.1016/j.dynatmoce.2012.06.002.CrossRefGoogle Scholar
  42. Zheng, F., and R.-H. Zhang, 2015: Interannually varying salinity effects on ENSO in the tropical Pacific: A diagnostic analysis from Argo. Ocean Dynamics, 65(5), 691–705, doi: 10.1007/s10236-015-0829-7.CrossRefGoogle Scholar
  43. Zheng, F., and J. Zhu, 2015: Roles of initial ocean surface and subsurface states on successfully predicting 2006-2007 El Niño with an intermediate coupled model. Ocean Science, 11, 187–194, doi: 10.5194/os-11-187-2015.CrossRefGoogle Scholar
  44. Zheng, F., and J. Zhu, 2016: Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model. Climate Dyn., 47, 3901–3915, doi: 10.1007/s00382-016-3048-0.CrossRefGoogle Scholar
  45. Zheng, F., J. Zhu, R.-H. Zhang, and G.-Q. Zhou, 2006: Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys. Res. Lett., 33, L19604, doi: 10.1029/2006GL026994.CrossRefGoogle Scholar
  46. Zheng, F., J. Zhu, and R.-H. Zhang, 2007: The impact of altimetry data on ENSO ensemble initializations and predictions. Geophys. Res. Lett., 34, L13611, doi: 10.1029/2007GL030451.Google Scholar
  47. Zheng, F., J. Zhu, H. Wang, and R.-H. Zhang, 2009a: Ensemble hindcasts of ENSO events over the past 120 years using a large number of ensembles. Adv. Atmos. Sci., 26(2), 359–372, doi: 10.1007/s00376-009-0359-7.CrossRefGoogle Scholar
  48. Zheng, F., H. Wang, and J. Zhu, 2009b: ENSO ensemble prediction: Initial error perturbations vs. model error perturbations. Chinese Science Bulletin, 54, 2516–2523, doi: 10.1007/s11434-009-0179-2.CrossRefGoogle Scholar
  49. Zheng, F., R.-H. Zhang, and J. Zhu, 2014a: Effects of interannual salinity variability on the barrier layer in the western-central equatorial Pacific: A diagnostic analysis from Argo. Adv. Atmos. Sci., 31(3), 532–542, doi: 10.1007/s00376-013-3061-8.CrossRefGoogle Scholar
  50. Zheng, F., X.-H. Fang, J.-Y. Yu, and J. Zhu, 2014b: Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys. Res. Lett., 41, 7651–7657, doi: 10.1002/2014GL062125.CrossRefGoogle Scholar
  51. Zheng, F., X.-H. Fang, J. Zhu, J.-Y. Yu, and X.-C. Li, 2016: Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophys. Res. Lett., 43, 12 560–12 568, doi: 10.1002/2016GL071636.CrossRefGoogle Scholar
  52. Zhu, J. S., B. H. Huang, R.-H. Zhang, Z.-Z. Hu, Arun Kumar, M. A. Balmaseda, L. Marx, and J. L. Kinter III, 2014: Salinity anomaly as a trigger for ENSO events. Scientific Reports, 4, 6821, doi: 10.1038/srep06821.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.International Center for Climate and Environment Science, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina
  3. 3.Department of Earth System ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations