Skip to main content
Log in

Dynamical feedback between synoptic eddy and low-frequency flow as simulated by BCC_CSM1.1(m)

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Since the interaction between atmospheric synoptic eddy (SE) (2–8 days) activity and low-frequency (LF) (monthly) flow (referred to as SELF) plays an essential role in generating and maintaining dominant climate modes, an evaluation of the performance of BCC_CSM1.1(m) in simulating the SE feedback onto the LF flow is given in this paper. The model captures well the major spatial features of climatological eddy vorticity forcing, eddy-induced growth rate, and patterns of SELF feedback for the climate modes with large magnitudes in cold seasons and small magnitudes in warm seasons for both the Northern and Southern Hemisphere. As in observations, the eddy-induced growth rate and SELF feedback patterns in the model also show positive SE feedback. Overall, the relationships between SE and LF flow show that BCC_CSM1.1(m) satisfactorily captures the basic features of positive SE feedback, which demonstrates the simulation skill of the model for LF variability. Specifically, such an evaluation can help to find model biases of BCC_CSM1.1(m) in simulating SE feedback, which will provide a reference for the model’s application.

摘 要

由于中高纬大气中天气尺度涡旋(2–8天尺度)与低频流(月尺度)的相互作用对于气候主模态的产生和维持起着重要的作用, 本文就 BCC_CSM1.1(m)模式中大气低频流与天气涡旋反馈的模拟能力进行了检验评估. 结果表明, 模式能够很好的抓住气候平均的涡旋涡度强迫, 涡旋增长率, 以及涡旋对大气主模态的动力反馈的空间特征. 气候平均的涡旋涡度强迫的量级在北半球和南半球均在冷季节大于暖季节. 模式中的涡旋增长率以及涡旋对大气低频主模态的反馈特征均表明涡旋反馈为正反馈作用, 这些结果与观测相一致. 总体来说, 天气尺度涡旋与大气低频流的关系显示 BCC_CSM1.1(m)模式能够抓住涡旋反馈的基本特征, 表明该模式对于低频变率具有一定的模拟技巧. 此外, 该评估工作可以找到模式模拟涡旋反馈的偏差, 这对于模式的应用具有重要的参考依据.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083–1126.

    Article  Google Scholar 

  • Branstator, G., 1992: The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci., 49, 1924–1946, doi: 10.1175/1520-0469(1992)049<1924:TMOLFA>2.0.CO;2.

    Article  Google Scholar 

  • Branstator, G., 1995: Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52, 207–226, doi: 10.1175/1520-0469(1995)052<0207: OOSTAB>2.0.CO;2.

    Article  Google Scholar 

  • Cai, M., and M. Mak, 1990: Symbiotic relation between planetary and synoptic-scale waves. J. Atmos. Sci., 47, 2953–2968, doi: 10.1175/1520-0469(1990)047<2953:SRBPAS>2.0.CO;2.

    Article  Google Scholar 

  • Chang, E. K. M., 2006: An idealized nonlinear model of the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 63, 1818–1839, doi: 10.1175/JAS3726.1.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.828.

    Article  Google Scholar 

  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022, doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    Article  Google Scholar 

  • Feldstein, S., 1998: The growth and decay of low-frequency anomalies in a GCM. J. Atmos. Sci., 55, 415–428, doi: 10.1175/1520-0469(1998)055<0415:TGADOL>2.0.CO;2.

    Article  Google Scholar 

  • Gong, D. Y., and S. W. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26, 459–462, doi: 10.1029/1999GL900003.

    Article  Google Scholar 

  • Jiang, Z. H., J. Song, L. Li, W. L. Chen, Z. F. Wang, and J. Wang, 2012: Extreme climate events in China: IPCC–AR4 model evaluation and projection. Climatic Change, 110, 385–401, doi: 10.1007/s10584-011-0090-0.

    Article  Google Scholar 

  • Jin, F.-F., 2010: Eddy-induced instability for low-frequency variability. J. Atmos. Sci., 67, 1947–1964, doi: 10.1175/2009JAS 3185.1.

    Article  Google Scholar 

  • Jin, F.-F., L.-L. Pan, and M. Watanabe, 2006a: Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure. J. Atmos. Sci., 63, 1677–1694, doi: 10.1175/JAS 3715.1.

    Article  Google Scholar 

  • Jin, F.-F., L.-L. Pan, and M. Watanabe, 2006b: Dynamics of synoptic eddy and low-frequency flow interaction. Part II: A theory for low-frequency modes. J. Atmos. Sci., 63, 1695–1708, doi: 10.1175/JAS3716.1.

    Article  Google Scholar 

  • Kang, I.-S., J.-S. Kug, M.-J. Lim, and D.-H. Choi, 2011: Impact of transient eddies on extratropical seasonal-mean predictability in DEMETER models. Climate Dyn., 37, 509–519, doi: 10.1007/s00382-010-0873-4.

    Article  Google Scholar 

  • Kok, C. J., J. D. Opsteegh, and H. M. van den Dool, 1987: Linear models: Useful tools to analyze GCM results. Mon. Wea. Rev., 115, 1996–2008, doi: 10.1175/1520-0493(1987)115 <1996:LMUTTA>2.0.CO;2.

    Article  Google Scholar 

  • Kug, J.-S., and F.-F. Jin, 2009: Left-hand rule for synoptic eddy feedback on low-frequency flow. Geophys. Res. Lett., 36, L05709, doi: 10.1029/2008GL036435.

    Article  Google Scholar 

  • Kug, J.-S., D.-H. Choi, F.-F. Jin, W.-T. Kwon, and H.-L. Ren, 2010c: Role of synoptic eddy feedback on polar climate responses to the anthropogenic forcing. Geophys. Res. Lett., 37, L14704, doi: 10.1029/2010GL043673.

    Google Scholar 

  • Kug, J.-S., F.-F. Jin, J. Park, H.-L. Ren, and I.-S. Kang, 2010a: A general rule for synoptic-eddy feedback onto low-frequency flow. Climate Dyn., 35, 1011–1026, doi: 10.1007/s00382-009-0606-8.

    Article  Google Scholar 

  • Kug, J.-S., F.-F. Jin, and H.-L. Ren, 2010b: Role of synoptic eddies on low-frequency precipitation variation. J. Geophys. Res., 115, D19115, doi: 10.1029/2009JD013675.

    Article  Google Scholar 

  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 2718–2743, doi: 10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    Article  Google Scholar 

  • Lau, N.-C., and M. J. Nath, 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48, 2589–2613, doi: 10.1175/1520-0469(1991)048<2589: VOTBAB>2.0.CO;2.

    Article  Google Scholar 

  • Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 3133–3136, doi: 10.1029/1999GL010478.

    Article  Google Scholar 

  • Lorenz, D. J., and D. L. Hartmann, 2003: Eddy-zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 1212–1227, doi: 10.1175/1520-0442(2003)16<1212: EFFITN>2.0.CO;2.

    Article  Google Scholar 

  • Luo, D. H., A. R. Lupo, and H. Wan, 2007: Dynamics of eddydriven low-frequency dipole modes. Part I: A simple model of North Atlantic Oscillations. J. Atmos. Sci., 64, 3–28, doi: 10.1175/JAS3818.1.

    Article  Google Scholar 

  • Nakamura, H., and J. M. Wallace, 1993: Synoptic behavior of baroclinic eddies during the blocking onset. Mon. Wea. Rev., 121, 1892–1903, doi: 10.1175/1520-0493(1993)121<1892: SBOBED>2.0.CO;2.

    Article  Google Scholar 

  • Nie, Y., Y. Zhang, X.-Q. Yang, and G. Chen, 2013: Baroclinic anomalies associated with the Southern Hemisphere Annular Mode: Roles of synoptic and low-frequency eddies. Geophys. Res. Lett., 40, 2361–2366, doi: 10.1002/grl.50396.

    Article  Google Scholar 

  • Pan, L.-L., F.-F. Jin, and M. Watanabe, 2006: Dynamics of synoptic eddy and low-frequency flow interaction. Part III: Baroclinic model results. J. Atmos. Sci., 63, 1709–1725, doi: 10.1175/JAS3717.1.

    Article  Google Scholar 

  • Ren, H.-L., F.-F. Jin, J.-S. Kug, J.-X. Zhao, and J. Park, 2009: A kinematic mechanism for positive feedback between synoptic eddies and NAO. Geophys. Res. Lett., 36, L11709, doi: 10.1029/2009GL037294.

    Article  Google Scholar 

  • Ren, H.-L., F.-F. Jin, J.-S. Kug, and L. Gao, 2011: Transformed eddy-PV flux and positive synoptic eddy feedback onto lowfrequency flow. Climate Dyn., 36, 2357–2370, doi: 10.1007/s00382-010-0913-0.

    Article  Google Scholar 

  • Ren, H.-L., F.-F. Jin, and L. Gao, 2012: Anatomy of synoptic Eddy-NAO interaction through eddy structure decomposition. J. Atmos. Sci., 69, 2171–2191, doi: 10.1175/JAS-D-11-069.1.

    Article  Google Scholar 

  • Ren, H.-L., F.-F. Jin, and J.-S. Kug, 2014: Eddy-induced growth rate of low-frequency variability and its mid-to late winter suppression in the northern hemisphere. J. Atmos. Sci., 71, 2281–2298, doi: 10.1175/JAS-D-13-0221.1.

    Article  Google Scholar 

  • Rivi`ere, G., and I. Orlanski, 2007: Characteristics of the Atlantic Storm-Track Eddy Activity and Its Relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241–266, doi: 10.1175/JAS3850.1.

    Article  Google Scholar 

  • Robinson, W. A., 1991a: The dynamics of low-frequency variability in a simple model of the global atmosphere. J. Atmos. Sci., 48, 429–441, doi: 10.1175/1520-0469(1991)048<0429: TDOLFV>2.0.CO;2.

    Article  Google Scholar 

  • Robinson, W. A., 1991b: The dynamics of the zonal index in a simple model of the atmosphere. Tellus A, 43, 295–305, http://dx.doi.org/10.1034/j.1600-0870.1991.t01-4-00005.x.

    Article  Google Scholar 

  • Robinson, W. A., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57, 415–422, doi: 10.1175/1520-0469(2000)057<0415:ABMFTE>2.0.CO;2.

    Article  Google Scholar 

  • Schuenemann, K. C., and J. J. Cassano, 2009: Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 1. Evaluation of late 20th century simulations from IPCC models. J. Geophys. Res., 114, D20113, doi: 10.1029/2009JD011705.

    Article  Google Scholar 

  • Tan, G.-R., H.-L. Ren, and H. S. Chen, 2015: Quantifying synoptic eddy feedback onto the low-frequency flow associated with anomalous temperature events in January over China. International Journal of Climatology, 35, 1976–1983, doi: 10.1002/joc.4135.

    Article  Google Scholar 

  • Tan, G.-R., F.-F. Jin, H.-L. Ren, and Z.-B. Sun, 2014: The role of eddy feedback in the excitation of the NAO. Meteorological Applications, 21, 768–776, doi: 10.1002/met.1415.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 1998: The arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, doi: 10.1029/98GL00950.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016, doi: 10.1175/1520-0442 (2000)013<1000:AMITEC>2.0.CO;2.

    Article  Google Scholar 

  • Vautard, R., B. Legras, and M. Déqué, 1988: On the source of midlatitude low-frequency variability. Part I: A statistical approach to persistence. J. Atmos. Sci., 45, 2811–2844, doi: 10.1175/1520-0469(1988)045<2811:OTSOML>2.0.CO;2.

    Article  Google Scholar 

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812, doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    Article  Google Scholar 

  • Wu, T. W., and Coauthors, 2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123–147, doi: 10.1007/s00382-008-0487-2.

    Article  Google Scholar 

  • Zhang, Y., X.-Q. Yang, Y. Nie, and G. Chen, 2012: Annular mode–like variation in a multilayer quasigeostrophic model. J. Atmos. Sci., 69, 2940–2958, doi: 10.1175/JAS-D-11-0214.1.

    Article  Google Scholar 

  • Zhou, T. J., Y. Q. Yu, H. L. Liu, W. Li, X. B. You, and G. Q. Zhou, 2007: Progress in the development and application of climate ocean models and ocean-atmosphere coupled models in China. Adv. Atmos. Sci., 24, 1109–1120, doi: 10.1007/s00376-007-1109-3.

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Science Foundation of China (Grant No. 41375062), the National Basic (973) Research Program of China (Grant No. 2015 CB453203), a China Meteorological Administration (CMA) Special Project (Grant No. GYHY201406022), and a CMA Key Project of Meteorological Prediction [Grant No. YBGJXM(2017)05].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Li Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Ren, HL. Dynamical feedback between synoptic eddy and low-frequency flow as simulated by BCC_CSM1.1(m). Adv. Atmos. Sci. 34, 1316–1332 (2017). https://doi.org/10.1007/s00376-017-6318-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6318-9

Key words

关键词

Navigation