Advertisement

Advances in Atmospheric Sciences

, Volume 34, Issue 12, pp 1381–1394 | Cite as

Sensitivity of potential evapotranspiration estimation to the Thornthwaite and Penman–Monteith methods in the study of global drylands

  • Qing YangEmail author
  • Zhuguo Ma
  • Ziyan Zheng
  • Yawen Duan
Original Paper

Abstract

Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations. The most widely accepted definition of the term dryland is a ratio, called the Surface Wetness Index (SWI), of annual precipitation to potential evapotranspiration (PET) being below 0.65. PET is commonly estimated using the Thornthwaite (PET Th) and Penman–Monteith equations (PET PM). The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM. Results showed vast differences between PET Th and PET PM; however, the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands, except in North America, with high correlation coefficients ranging from 0.58 to 0.89. It was found that, during 1901–2014, global hyper-arid and semi-arid regions expanded, arid and dry sub-humid regions contracted, and drylands underwent interdecadal fluctuation. This was because precipitation variations made major contributions, whereas PET changes contributed to a much lesser degree. However, distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found. This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry–wet transition zone. Additionally, the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming, and the Thornthwaite method was found to be increasingly less applicable under climate change.

Key words

potential evapotranspiration global drylands Thornthwaite Penman–Monteith 

摘要

干旱区是对气候变化和人类活动响应最为敏感的地区之一. 通常将地表湿润指数(SWI, 年降水量与潜在蒸散发PET的比值)小于0.65的区域定义为干旱区. Thornthwaite方法和Penman–Monteith方法是当前估算PET的两种常用算法. 本文在年代际尺度上比较分析了基于这两种PET算法时全球干旱区面积的时空变化特征. 结果发现虽然两种方法估算的PET在时空特征上存在显著的差异, 但基于这两种PET得到的全球和各大陆(北美洲除外)的干旱区面积呈现出相似的年代际变化, 相关系数为0.58~0.89. 二者均显示出1901-2014年全球总干旱区面积呈现出明显的年代际振荡, 其中极端干旱区和半干旱区显著扩张, 干旱区和干湿过渡带显著缩小. 这是因为全球降水的年代际变化主导了全球干旱区面积的年代际变化, 而PET变化的贡献次之. 同时也发现, 在干湿过渡带上, PET与降水变化的贡献相当, 这使得两种算法得到的全球半干旱区和干湿过渡带面积的年代际变化存在明显的差异, 且这种现象在北美最为明显. 此外, 上世纪80年代以后, 两种算法均显示PET的年代际变化对全球干旱区面积年代际变化的贡献逐渐加大. 因此在当前和未来情景下, 在全球干旱区面积变化的研究中, 采用Penman–Monteith方法估算PET更为合理.

关键词

潜在蒸散发 全球干旱区 Thornthwaite方法 Penman–Monteith方法 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was jointly sponsored by the National K&D Program of China (Grant No. 2016YFA0600404), the China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201106028 and GYHY201506001-1), the National Natural Science Foundation of China (Grant No. 41530532), and the Jiangsu Collaborative Innovation Center for Climate Change.

References

  1. Allen, R. G., M. Smith, A. Perrier, and L. S. Pereira, 1994a: An update for the definition of reference evapotranspiration. ICID Bulletin, 43, 1–34.Google Scholar
  2. Allen, R. G., M. Smith, A. Perrier, and L. S. Pereira, 1994b: An update for the calculation of reference evapotranspiration. ICID Bulletin, 43, 35–92.Google Scholar
  3. An, L. J., F. M. Ren, Y. J. Li, and Y. P. Li, 2014: Study on characteristics of regional drought events over north China during the past 50 years. Meteorological Monthly, 40, 1097–1105, doi: 10.7519/j.issn.1000-0526.2014.09.007. (in Chinese with English abstract)Google Scholar
  4. Beguería, S., S. M. Vicente-Serrano, F. Reig, and B. Latorre, 2014: Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34, 3001–3023, doi: 10.1002/joc.3887.CrossRefGoogle Scholar
  5. Bontemps, S., P. Defourny, E. Van Bogaert, O. Arino, V. Kalagirou, and J. R. Perez, 2011: GlobCover 2009: Products description and validation report. [Available online from http://ionia1.esrin.esa.int/docs/GLOBCOVER2009 Validation Report 2.]Google Scholar
  6. Cong, Z. T., D. W. Yang, and G. H. Ni, 2009: Does evaporation paradox exist in China? Hydrology and Earth System Sciences, 13, 357–366.CrossRefGoogle Scholar
  7. Dai, A. G., 2011: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900-2008. J. Geophys. Res., 116, D12115, doi: 10.1029/2010JD015541.CrossRefGoogle Scholar
  8. Dai, A. G., 2013: Increasing drought under global warming in observations and models. Nat. Clim. Change, 3, 52–58, doi:10.1038/nclimate1633.CrossRefGoogle Scholar
  9. Feng, S., and Q. Fu, 2013: Expansion of global drylands under a warming climate. Atmospheric Chemistry and Physics, 13, 10 081–10 094, doi: 10.5194/acp-13-10081-2013.CrossRefGoogle Scholar
  10. Feng, S., M. Trnka, M. Hayes, and Y. J. Zhang, 2017: Why do different drought indices show distinct future drought risk outcomes in the U.S. great plains? J. Climate, 30, 265–278, doi: 10.1175/JCLI-D-15-0590.1.CrossRefGoogle Scholar
  11. Food and Agriculture Organization of the United Nations, 2008: Water and cereals in drylands. Food and Agriculture Organization of the United Nations, Roma.Google Scholar
  12. Fu, G. B., S. P. Charles, and J. J. Yu, 2009: A critical overview of pan evaporation trends over the last 50 years. Climatic Change, 97, 193–214, doi: 10.1007/s10584-009-9579-1.CrossRefGoogle Scholar
  13. Gao, G., D. L. Chen, G. Y. Ren, Y. Chen, and Y. M. Liao, 2006: Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956-2000. Journal of Geographical Sciences, 16, 3–12, doi: 10.1007/s11442-006-0101-7.CrossRefGoogle Scholar
  14. Gao, G., D. L. Chen, C.-Y. Xu, and E. Simelton, 2007: Trend of estimated actual evapotranspiration over China during 1960-2002. J. Geophys. Res., 112, D11120, doi: 10.1029/2006JD008010.CrossRefGoogle Scholar
  15. Hargreaves, G. H., and R. G. Allen, 2003: History and Evaluation of Hargreaves Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering, 129, 53–63, doi: 10.1061/(ASCE)0733-9437(2003)129:1(53).CrossRefGoogle Scholar
  16. Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observationsthe CRU TS3.10 Dataset. International Journal of Climatology, 34, 623–642, doi: 10.1002/joc.3711.CrossRefGoogle Scholar
  17. Heim, R. R., Jr., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 1149–1165, doi: 10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2.CrossRefGoogle Scholar
  18. Huang, J. P., H. P. Yu, X. D. Guan, G. Y. Wang, and R. X. Guo, 2016a: Accelerated dryland expansion under climate change. Nat. Clim. Change, 6, 166–171, doi: 10.1038/nclimate2837.CrossRefGoogle Scholar
  19. Huang, J. P., M. X. Ji, Y. K. Xie, S. S. Wang, Y. L. He, and J. J. Ran, 2016b: Global semi-arid climate change over last 60 years. Climate Dyn., 46, 1131–1150, doi: 10.1007/s00382-015-2636-8.CrossRefGoogle Scholar
  20. Huang, N. E., and Z. H. Wu, 2008: A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi: 10.1029/2007RG000228.CrossRefGoogle Scholar
  21. Hulme, M., R. Marsh, and P. D. Jones, 1992: Global changes in a humidity index between 1931-60 and 1961-90. Climate Research, 2, 1–22, doi: 10.3354/cr002001.CrossRefGoogle Scholar
  22. Keyantash, J., and J. A. Dracup, 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83, 1167–1180, doi: 10.1175/1520-0477(2002)083<1191:TQODAE>2.3.CO;2.CrossRefGoogle Scholar
  23. Li, Y., J. P. Huang, M. X. Ji, and J. J. Ran, 2015: Dryland expansion in northern China from 1948 to 2008. Adv. Atmos. Sci., 32, 870–876, doi: 10.1007/s00376-014-4106-3.CrossRefGoogle Scholar
  24. Lioubimtseva, E., and G. M. Henebry, 2009: Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. Journal of Arid Environments, 73, 963–977, doi: 10.1016/j.jaridenv.2009.04.022.CrossRefGoogle Scholar
  25. Liu, B., and Z. G. Ma, 2007: Area change of dry and wet regions in China in the past 45 years. Arid Land Geography, 30, 7–15, doi: 10.3321/j.issn:1000-6060.2007.01.002. (in Chinese with English abstract)Google Scholar
  26. Ma, Z. G., and C. B. Fu, 2003: Interannual characteristics of the surface hydrological variables over the arid and semi-arid areas of northern China. Global and Planetary Change, 37, 189–200, doi: 10.1016/S0921-8181(02)00203-5.Google Scholar
  27. Ma, Z. G., and C. B. Fu, 2005: Decadal variations of arid and semi-arid boundary in China. Chinese Journal of Geophysics, 48, 519–525, doi: 10.3321/j.issn:0001-5733.2005.03.008. (in Chinese with English abstract)Google Scholar
  28. Ma, Z. G., and C. B. Fu, 2006: Some evidence of drying trend over northern China from 1951 to 2004. Chinese Science Bulletin, 51, 2913–2925, doi: 10.1007/s11434-006-2159-0.CrossRefGoogle Scholar
  29. Ma, Z. G., and C. B. Fu, 2007: Global aridification in the second half of the 20th century and its relationship to large-scale climate background. Science in China Series D: Earth Sciences, 50, 776–788, doi: 10.1007/s11430-007-0036-6.CrossRefGoogle Scholar
  30. Maidment, R. I., R. P. Allan, and E. Black, 2015: Recent observed and simulated changes in precipitation over Africa. Geophys. Res. Lett., 42, 8155–8164, doi: 10.1002/2015gl065765.CrossRefGoogle Scholar
  31. McMahon, T. A., B. L. Finlayson, and M. C. Peel, 2016: Historical developments of models for estimating evaporation using standard meteorological data. Wiley Interdisciplinary Reviews: Water, 3, 788–818, doi: 10.1002/wat2.1172.CrossRefGoogle Scholar
  32. Mishra, A. K., and V. P. Singh, 2010: A review of drought concepts. Journal of Hydrology, 391, 202–216, doi: 10.1016/j.jhydrol.2010.07.012.CrossRefGoogle Scholar
  33. Palmer, W. C., 1965: Meteorological drought. Research Paper No. 45. U.S. Weather Bureau, Washington, D.C.Google Scholar
  34. Qian, C., and T. J. Zhou, 2014: Multidecadal variability of north China aridity and its relationship to PDO during 1900-2010. J. Climate, 27, 1210–1222, doi: 10.1175/JCLI-D-13-00235.1.CrossRefGoogle Scholar
  35. Rezaei, M., M. Valipour, and M. Valipour, 2016: Modelling evapotranspiration to increase the accuracy of the estimations based on the climatic parameters. Water Conservation Science and Engineering, 1, 197–207, doi: 10.1007/s41101-016-0013-z.CrossRefGoogle Scholar
  36. Reynolds, J. F., and Coauthors, 2007: Global desertification: Building a science for dryland development. Science, 316, 847–851, doi: 10.1126/science.1131634.CrossRefGoogle Scholar
  37. Roderick, M. L. and G. D. Farquhar, 2002: The cause of decreased pan evaporation over the past 50 years. Science, 298, 1410–1411.Google Scholar
  38. Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435–438, doi: 10.1038/nature11575.CrossRefGoogle Scholar
  39. Sherwood, S., and Q. Fu, 2014: A drier future? Science, 343, 737–739, doi: 10.1126/science.1247620.CrossRefGoogle Scholar
  40. Shuttleworth, W. J., and J. S. Wallace, 1985: Evaporation from sparse crops-An energy combination theory. Quart. J. Roy. Meteor. Soc., 111, 839–855, doi: 10.1002/qj.49711146910.CrossRefGoogle Scholar
  41. Tegos, A., N. Malamos, and D. Koutsoyiannis, 2015: A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman-Monteith formula. J. Hydrol., 524, 708–717, doi: 10.1016/j.jhydrol.2015.03.024.CrossRefGoogle Scholar
  42. Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geographical Review, 38, 55–94, doi: 10.2307/210739.CrossRefGoogle Scholar
  43. Trenberth, K. E., A. G. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Clim. Change, 4, 17–22, doi: 10.1038/nclimate2067.CrossRefGoogle Scholar
  44. United Nations Environment Programme (UNEP), 1992: World atlas of desertification. Edward Arnold, Sevenoaks, 68pp.Google Scholar
  45. Valipour, M., 2013: Use of surface water supply index to assessing of water resources management in Colorado and Oregon, US. Advances in Agriculture, Sciences and Engineering Research, 3, 631–640.Google Scholar
  46. Valipour, M., M. A. Gholami Sefidkouhi, and M. Raeini-Sarjaz, 2017: Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agricultural Water Management, 180, 50–60, doi: 10.1016/j.agwat.2016.08.025.CrossRefGoogle Scholar
  47. van der Schrier, G., P. D. Jones, and K. R. Briffa, 2011: The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. J. Geophys. Res., 116, D03106, doi: 10.1029/2010JD015001.Google Scholar
  48. van der Schrier, G., J. Barichivich, K. R. Briffa, and P. D. Jones, 2013: A scPDSI-based global data set of dry and wet spells for 1901-2009. J. Geophys. Res., 118, 4025–4048, doi: 10.1002/jgrd.50355.Google Scholar
  49. Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010a: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 1696–1718, doi: 10.1175/2009JCLI2909.1.CrossRefGoogle Scholar
  50. Vicente-Serrano, S. M., S. Beguería, J. I. López-Moreno, M. Angulo, and A. El Kenawy, 2010b: A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the palmer drought severity index. Journal of Hydrometeorology, 11, 1033–1043, doi: 10.1175/2010JHM1224.1.CrossRefGoogle Scholar
  51. Vicente-Serrano, S. M., and Coauthors, 2012: Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16, 10, doi: 10.1175/2012EI000434.1.CrossRefGoogle Scholar
  52. Wilks, D. S., 2005: Statistical Methods in the Atmospheric Sciences (International Geophysics). 2nd ed. Academic Press.Google Scholar
  53. Willmott, C. J., C. M. Rowe, and Y. Mintz, 1985: Climatology of the terrestrial seasonal water cycle. J. Climatol., 5, 589–606, doi: 10.1002/joc.3370050602.CrossRefGoogle Scholar
  54. Wu, Z. H., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1, 1–41, doi: 10.1142/S1793536909000047.CrossRefGoogle Scholar
  55. Wu, Z. H., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Y. Chen, 2011: On the time-varying trend in globalmean surface temperature. Climate Dyn., 37, 759–773, doi: 10.1007/s00382-011-1128-8.CrossRefGoogle Scholar
  56. Xia, J. J., Z. W. Yan, and P. L. Wu, 2013: Multidecadal variability in local growing season during 1901-2009. Climate Dyn., 41, 295–305, doi: 10.1007/s00382-012-1438-5.CrossRefGoogle Scholar
  57. Xu, C.-Y., L. B. Gong, T. Jiang, D. L. Chen, and V. P. Singh, 2006: Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. Hydrol., 327, 81–93, doi: 10.1016/j.jhydrol.2005.11.029.CrossRefGoogle Scholar
  58. Yuan, S. S., and S. M. Quiring, 2014: Drought in the U.S. great plains (1980-2012): A sensitivity study using different methods for estimating potential evapotranspiration in the Palmer Drought Severity Index. J. Geophys. Res., 119, 10 996–11 010, doi: 10.1002/2014JD021970.Google Scholar
  59. Zhang, J., F. B. Sun, J. J. Xu, Y. N. Chen, Y.-F. Sang, and C. M. Liu, 2016: Dependence of trends in and sensitivity of drought over China (1961-2013) on potential evaporation model. Geophys. Res. Lett., 43, 206–213, doi: 10.1002/2015GL067473.CrossRefGoogle Scholar
  60. Zhou, M. C., H. Ishidaira, and K. Takeuchi, 2008: Comparative study of potential evapotranspiration and interception evaporation by land cover over Mekong basin. Hydrological Processes, 22, 1290–1309, doi: 10.1002/hyp.6939.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Qing Yang
    • 1
    Email author
  • Zhuguo Ma
    • 1
    • 2
  • Ziyan Zheng
    • 1
  • Yawen Duan
    • 1
    • 2
  1. 1.Key Laboratory of Regional Climate–Environment for Temperate East Asia, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations