Advances in Atmospheric Sciences

, Volume 34, Issue 11, pp 1265–1281 | Cite as

A new Infrared Atmospheric Sounding Interferometer channel selection and assessment of its impact on Met Office NWP forecasts

  • Young-Chan Noh
  • Byung-Ju Sohn
  • Yoonjae Kim
  • Sangwon Joo
  • William Bell
  • Roger Saunders
Open Access
Original Paper


A new set of Infrared Atmospheric Sounding Interferometer (IASI) channels was re-selected from 314 EUMETSAT channels. In selecting channels, we calculated the impact of the individually added channel on the improvement in the analysis outputs from a one-dimensional variational analysis (1D-Var) for the Unified Model (UM) data assimilation system at the Met Office, using the channel score index (CSI) as a figure of merit. Then, 200 channels were selected in order by counting each individual channel’s CSI contribution. Compared with the operationally used 183 channels for the UM at the Met Office, the new set shares 149 channels, while the other 51 channels are new. Also examined is the selection from the entropy reduction method with the same 1D-Var approach. Results suggest that channel selection can be made in a more objective fashion using the proposed CSI method. This is because the most important channels can be selected across the whole IASI observation spectrum.

In the experimental trial runs using the UM global assimilation system, the new channels had an overall neutral impact in terms of improvement in forecasts, as compared with results from the operational channels. However, upper-tropospheric moist biases shown in the control run with operational channels were significantly reduced in the experimental trial with the newly selected channels. The reduction of moist biases was mainly due to the additional water vapor channels, which are sensitive to the upper-tropospheric water vapor.

Key words

Hyperspectral IR sounding channel selection 1D-Var data assimilation 

摘 要

本文从欧洲气象卫星的 314 个观测通道中重新选择了一系列新的大气红外探测器(IASI)通道. 在选择过程中, 用通道得分指数(CS))分别评估在一维变分(1D-Var)同化系统中独立增加每一个通道对英国气象局一体化模式(UM)的改进情况; 然后, 根据每个通道的CSI贡献依次筛选出200个通道, 和当前业务中使用的 183 个通道相比, 新选择的通道有 149 个与之相同, 其余的 51 个通道与之不同. 同时, 本文采用熵减法在相同 1D-Var 系统中选出的通道的进行对比研究, 其结果表明, 使用 CSI 方法进行通道选择更客观, 这是因为该方法可以从整个探 IASI 观测频谱中选择出最重要的通道. 在使用 UM 全球同化系统的预报实验中, 采用新的通道相比于当前业务通道, 在预报质量方面没有明显的改善, 但是新方案能明显减小, 由当前业务通道带来的对流层上层水汽误差. 这种改善主要是因为增加了对于对流层上层水汽敏感的额外水汽通道.


大气红外探测器 通道选择 一维变分 联合模式 



This study was carried out through a collaboration between the UKMO and the Korea Meteorological Administration (KMA). This research was supported by the KMA Research and Development Program under Grant No. KMIPA 2015-1060, and was also supported by the BK21 Plus Project of the Korean government.


  1. Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47–55, doi: 10.1038/nature14956.CrossRefGoogle Scholar
  2. Bormann, N., and P. Bauer, 2010: Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. I: Methods and application to ATOVS data. Quart. J. Roy. Meteor. Soc., 136, 1036–1050, doi: 10.1002/qj.616.CrossRefGoogle Scholar
  3. Cameron, J. R. N., A. D. Collard, and S. J. English, 2005: Operational use of AIRS observations at the Met Office. Proceedings of the 14th International TOVS Study Conf., Beijing, China.Google Scholar
  4. Collard, A. D., 2007: Selection of IASI channels for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 133, 1977–1991, doi: 10.1002/qj.178.CrossRefGoogle Scholar
  5. Collard, A. D., and A. P. McNally, 2009: The assimilation of Infrared Atmospheric Sounding Interferometer radiances at ECMWF. Quart. J. Roy. Meteor. Soc., 135, 1044–1058, doi: 10.1002/qj.410.CrossRefGoogle Scholar
  6. Deblonde, G., J. F. Mahfouf, B. Bilodeau, and D. Anselmo, 2007: One-dimensional variational data assimilation of SSM/I observations in rainy atmospheres at MSC. Mon.Wea. Rev., 135, 152–172, doi: 10.1175/MWR3265.1.CrossRefGoogle Scholar
  7. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.828.CrossRefGoogle Scholar
  8. English, S. J., 1999: Estimation of temperature and humidity profile information from microwave radiances over different surface types. J. Appl. Meteor., 38, 1526–1541, doi: 10.1175/1520-0450(1999)038<1526:EOTAHP>2.0.CO;2.CrossRefGoogle Scholar
  9. English, S. J., R. J. Renshaw, P. C. Dibben, A. J. Smith, P. J. Rayer, C. Poulsen, F. W. Saunders, and J. R. Eyre, 2000: A comparison of the impact of TOVS arid ATOVS satellite sounding data on the accuracy of numerical weather forecasts. Quart. J. Roy. Meteor. Soc., 126, 2911–2931, doi: 10.1002/qj. 49712656915.Google Scholar
  10. Gambacorta, A., and C. D. Barnet, 2013: Methodology and information content of the NOAA NESDIS operational channel selection for the Cross-Track Infrared Sounder (CrIS). IEEE Trans. Geosci. Remote Sens., 51, 3207–3216, doi: 10.1109/TGRS.2012.2220369.CrossRefGoogle Scholar
  11. Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 1453–1468, doi: 10.1002/qj.49712757418.CrossRefGoogle Scholar
  12. Hilton, F., N. C. Atkinson, S. J. English, and J. R. Eyre, 2009: Assimilation of IASI at the Met Office and assessment of its impact through observing system experiments. Quart. J. Roy. Meteor. Soc., 135, 495–505, doi: 10.1002/qj.379.CrossRefGoogle Scholar
  13. Joo, S., J. Eyre, and R. Marriott, 2013: The impact of MetOp and other satellite data within the Met Office global NWP system using an adjoint-based sensitivity method. Mon. Wea. Rev., 141, 3331–3342, doi: 10.1175/MWR-D-12-00232.1.CrossRefGoogle Scholar
  14. Kelly, G., and J.-N. Thépaut, 2007: Evaluation of the impact of the space component of the global observing system through observing system experiments. ECMWF Newsletter, 113, 16–28.Google Scholar
  15. Lorenc, A. C., and R. T. Marriott, 2014: Forecast sensitivity to observations in the Met Office Global numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 140, 209–224, doi: 10.1002/qj.2122.CrossRefGoogle Scholar
  16. Martinet, P., L. Lavanant, N. Fourrié, F. Rabier, and A. Gambacorta, 2014: Evaluation of a revised IASI channel selection for cloudy retrievals with a focus on the Mediterranean basin. Quart. J. Roy. Meteor. Soc., 140, 1563–1577, doi: 10.1002/qj.2239.CrossRefGoogle Scholar
  17. Matricardi, M., F. Chevallier, G. Kelly, and J.-N. Thépaut, 2004: An improved general fast radiative transfer model for the assimilation of radiance observations. Quart. J. Roy. Meteor. Soc., 130, 153–173, doi: 10.1256/qj.02.181.CrossRefGoogle Scholar
  18. Migliorini, S., 2015: Optimal ensemble-based selection of channels from advanced sounders in the presence of cloud. Mon. Wea. Rev., 143, 3754–3773, doi: 10.1175/MWR-D-14-00249.1.CrossRefGoogle Scholar
  19. Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747–1763, doi: 10.1175/1520-0493 (1992)120<1747:TNMCSS>2.0.CO;2.CrossRefGoogle Scholar
  20. Pavelin, E. G., S. J. English, and J. R. Eyre, 2008: The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 134, 737–749, doi: 10.1002/qj.243.CrossRefGoogle Scholar
  21. Rabier, F., N. Fourrié, D. Chafa¨ı, and P. Prunet, 2002: Channel selection methods for Infrared Atmospheric Sounding Interferometer radiances. Quart. J. Roy. Meteor. Soc., 128, 1011–1027, doi: 10.1256/0035900021643638.CrossRefGoogle Scholar
  22. Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G. W. Inverarity, A. C. Lorenc, and T. J. Payne, 2007: The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133, 347–362, doi: 10.1002/qj.32.CrossRefGoogle Scholar
  23. Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2. World Scientific, 256 pp.Google Scholar
  24. Saunders, R. W., T. A. Blackmore, B. Candy, P. N. Francis, and T. J. Hewison, 2013: Monitoring satellite radiance biases using NWP models. IEEE Trans. Geosci. Remote Sens., 51, 1124–1138, doi: 10.1109/TGRS.2012.2229283.CrossRefGoogle Scholar
  25. Siméoni, D., C. Singer, and G. Chalon, 1997: Infrared atmospheric sounding interferometer. Acta Astronautica, 40, 113–118, doi: 10.1016/S0094-5765(97)00098-2.CrossRefGoogle Scholar
  26. Smith, F. I., 2014: Improving the information content of IASI assimilation for numerical weather prediction. PhD. dissertation, Department of Physics and Astronomy, University of Leicester.Google Scholar
  27. Weston, P., 2011: Progress towards the implementation of correlated observation errors in 4D-Var. Forecasting Research Tech. Rep. 560, Met Office, Exeter, UK.Google Scholar
  28. Weston, P., E. G. Pavelin, and A. D. Collard, 2013: NWP SAF Met Office 1D-Var User Manual. NWPSAF-MO-UD-006.Google Scholar
  29. Weston, P. P., W. Bell, and J. R. Eyre, 2014: Accounting for correlated error in the assimilation of high-resolution sounder data. Quart. J. Roy. Meteor. Soc., 140, 2420–2429, doi: 10.1002/qj.2306.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Young-Chan Noh
    • 1
  • Byung-Ju Sohn
    • 1
  • Yoonjae Kim
    • 2
  • Sangwon Joo
    • 2
  • William Bell
    • 3
  • Roger Saunders
    • 3
  1. 1.School of Earth and Environmental SciencesSeoul National UniversitySeoulKorea
  2. 2.Numerical Modeling CenterKorea Meteorological AdministrationSeoulKorea
  3. 3.Met OfficeExeterUK

Personalised recommendations