Using NWP to assess the influence of the Arctic atmosphere on midlatitude weather and climate

Abstract

The influence of the Arctic atmosphere on Northern Hemisphere midlatitude tropospheric weather and climate is explored by comparing the skill of two sets of 14-day weather forecast experiments using the ECMWF model with and without relaxation of the Arctic atmosphere towards ERA-Interim reanalysis data during the integration. Two pathways are identified along which the Arctic influences midlatitude weather: a pronounced one over Asia and Eastern Europe, and a secondary one over North America. In general, linkages are found to be strongest (weakest) during boreal winter (summer) when the amplitude of stationary planetary waves over the Northern Hemisphere is strongest (weakest). No discernible Arctic impact is found over the North Atlantic and North Pacific region, which is consistent with predominantly southwesterly flow. An analysis of the flow-dependence of the linkages shows that anomalous northerly flow conditions increase the Arctic influence on midlatitude weather over the continents. Specifically, an anomalous northerly flow from the Kara Sea towards West Asia leads to cold surface temperature anomalies not only over West Asia but also over Eastern and Central Europe. Finally, the results of this study are discussed in the light of potential midlatitude benefits of improved Arctic prediction capabilities.

摘要

本文采用ECMWF模式进行了两组14天天气预报试验, 两组试验的区别是积分过程中是否采用趋向ERA再分析数据的北极大气松弛系数, 通过比较来分析北极大气对北半球中纬度对流层天气和气候的影响, 并确定了两条北极影响中纬度天气的路径: 主要路径在亚洲和东欧, 次要路径在北美. 总的来说, 北半球冬季(夏季)静止行星波幅度最大(最弱)的情况下, 关联最强(最弱);北大西洋和北太平洋地区的北极影响很弱, 这与西南气流是一致的. 对气流依赖性的分析表明, 北极异常气流加强了北极对中纬度大陆地区的影响, 具体来说, 喀拉海向西亚的偏北异常气流导致了西亚及东欧和中欧地区的异常低温. 最后, 从改进北极预测能力以利于中纬度的角度讨论了本文的研究结果.

This is a preview of subscription content, access via your institution.

References

  1. Barnston, A. G. and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115(6), 1083–1126.

    Article  Google Scholar 

  2. Budikova, D., 2009: Role of Arctic sea ice in global atmospheric circulation: A review. Global and Planetary Change, 68(3), 149–163.

    Article  Google Scholar 

  3. Cohen, J., K. Saito, and D. Entekhabi, 2001: The role of the Siberian high in Northern Hemisphere climate variability. Geophys. Res. Lett., 28(2), 299–302.

    Article  Google Scholar 

  4. Cohen, J. L., M. A. Barlow, V. A. Alexeev, J. E. Cherry, et al., 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environmental Research Letters, 7(1), 14 007–14 014.

    Article  Google Scholar 

  5. Francis, J. A., W. Chan, D. J. Leathers, J. R. Miller, and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36(7), L07503.

    Article  Google Scholar 

  6. Francis, J. A. and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39(6), L06801.

    Article  Google Scholar 

  7. Gao, Y., et al., 2015: Arctic Sea Ice and Eurasian Climate: A Review. Adv. Atmos. Sci., 32, 92–114.

    Article  Google Scholar 

  8. Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36(8), L08707.

    Article  Google Scholar 

  9. Jung, T., M. A. Kasper, T. Semmler, and S. Serrar, 2014: Arctic influence on medium-range and extended-range prediction in mid-latitudes. Geophys. Res. Lett, 41, https://doi.org/10.1002/2014GL059961.

    Google Scholar 

  10. Jung, T., M. Miller, and T. Palmer, 2010a: Diagnosing the origin of extended-range forecast errors. Mon.Wea. Rev., 138(6), 2434–2446.

    Article  Google Scholar 

  11. Jung, T., T. Palmer, M. Rodwell, and S. Serrar, 2010b: Understanding the Anomalously Cold EuropeanWinter of 2005/06 Using Relaxation Experiments. Mon.Wea. Rev., 138(8), 3157–3174.

    Article  Google Scholar 

  12. Jung, T., F. Vitart, L. Ferranti, and J.-J. Morcrette, 2011: Origin and predictability of the extreme negative NAO winter of 2009/10. Geophys. Res. Lett., 38(7), L07701, https://doi.org/10.1029/2011GL046786.

    Article  Google Scholar 

  13. Overland, J. E. and M. Wang, 2016: Recent extreme Arctic temperatures are due to a split polar vortex. J. Climate, 29(15), 5609–5616.

    Article  Google Scholar 

  14. Parkinson, C. L. and J. C. Comiso, 2013: On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Geophys. Res. Lett., 40(7), 1356–1361.

    Article  Google Scholar 

  15. Semmler, T., M. A. Kasper, T. Jung, and S. Serrar, 2016: Remote impact of the Antarctic atmosphere on the Southern mid-latitudes. Meteorologische Zeitschrift, 25, 71–77.

    Article  Google Scholar 

  16. Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters, 8(1), 014036.

    Article  Google Scholar 

  17. Vihma, T., 2014: Effects of Arctic Sea Ice Decline onWeather and Climate: A Review. Surveys in Geophysics, 1–40.

    Google Scholar 

  18. Wu, B., J. Su, and R. D Arrigo, 2015: Patterns of Asian winter climate variability and links to Arctic sea ice. J. Climate, 28(17), 6841–6858.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the ECMWF for providing the supercomputing resources under the ECMWF special project SPDEJUNG2. S. S. benefited from funding through the Helmholtz Climate Initiative REKLIM. Valuable comments from two anonymous reviewers and the editor, which helped to improve the manuscript, are highly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tido Semmler.

Additional information

This article is published with open access at link.springer.com

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Semmler, T., Jung, T., Kasper, M.A. et al. Using NWP to assess the influence of the Arctic atmosphere on midlatitude weather and climate. Adv. Atmos. Sci. 35, 5–13 (2018). https://doi.org/10.1007/s00376-017-6290-4

Download citation

Key words

  • Arctic
  • atmosphere
  • relaxation
  • northern midlatitudes
  • linkage
  • model

关键词

  • 北极
  • 大气
  • 松弛系数
  • 北半球中纬度
  • 关联
  • 模式