Advertisement

Advances in Atmospheric Sciences

, Volume 34, Issue 7, pp 847–858 | Cite as

Autumn snow cover variability over northern Eurasia and roles of atmospheric circulation

  • Kunhui Ye
  • Renguang WuEmail author
Original Paper

Abstract

This study analyzes the variability of northern Eurasian snow cover (SC) in autumn and the impacts of atmospheric circulation changes. The region of large SC variability displays a southward shift from September to November, following the seasonal progression of the transition zones of surface air temperature (SAT). The dominant pattern of SC variability in September and October features a zonal distribution, and that in November displays an obvious west–east contrast. Surface air cooling and snowfall increase are two factors for larger SC. The relative contribution of SAT and snowfall changes to SC, however, varies with the region and depends upon the season. The downward longwave radiation and atmospheric heat advection play important roles in SAT changes. Anomalous convergence of water vapor flux contributes to enhanced snowfall. The changes in downward longwave radiation are associated with those in atmospheric water content and column thickness. Changes in snowfall and the transport of atmospheric moisture determine the atmospheric moisture content in September and October, and the snowfall appears to be a main factor for atmospheric moisture change in November. These results indicate that atmospheric circulation changes play an important role in snow variability over northern Eurasia in autumn. Overall, the coupling between autumn Eurasian snow and atmospheric circulation may not be driven by external forcing.

Key words

Autumn Eurasian snow cover surface air temperature surface heat fluxes atmospheric circulation water vapor transport 

摘要

欧亚中高纬度雪盖的变化能影响印度夏季风和东亚夏季气候变异. 秋季欧亚雪盖对冬季北极涛动这一北半球重要气候系统的变化可能是一个贡献因子. 因此,研究秋季欧亚地区雪盖的变化及其因子对理解随后季节欧亚的气候变异会有重要帮助. 香港中文大学的叶坤辉博士和大气物理研究所的吴仁广教授近年来致力于研究秋季欧亚地区雪盖变异,以提高对欧亚积雪变化的因子和其对冬季北极涛动影响的理解. 他们的研究表明,降雪和地面气温对欧亚积雪的变化都有贡献. 其影响的途径和重要性在不同地区是不一样的. 进一步分析揭示伴随的表面热通量和大气环流变化. 大气中的水汽输送和其辐合辐散对于降雪和长波辐射的变化有重要作用. 向下的异常长波辐射和异常风温度平流共同引起表面温度的变化. 他们的研究结果说明大气环流和与之相联系的地面状况变化是秋季欧亚积雪变化的基本因子. 这使得秋季欧亚积雪异常和其气候影响的预报变得复杂.

关键词

秋季欧亚雪盖 地面气温 表面热通量 大气环流 水汽输送 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

RW is supported by the National Key Basic Research Program of China (Grant No. 2014CB953902) and the National Natural Science Foundation of China (Grant Nos. 41530425, 41275081 and 41475081). We would like to thank the NSIDC, the Met Office Hadley Center, the CRU (University of East Anglia, UK), and the Japan Meteorological Agency, for providing data. We are grateful to Prof. Gabriel LAU for his comments on an earlier version of the manuscript.

References

  1. Allen, R. J., and C. S. Zender, 2011: Forcing of the arctic oscillation by Eurasian snow cover. J. Climate, 24(24), 6528–6539, doi: 10.1175/2011JCLI4157.1.CrossRefGoogle Scholar
  2. Bamzai, A. S., and J. Shukla, 1999: Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: An observational study. J. Climate, 12, 3117–3132, doi: 10.1175/1520-0442(1999)012<3117:RBESCS>2.0.CO;2.CrossRefGoogle Scholar
  3. Barnett, T. P., L. Dümenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46(5), 661–686, doi: 10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2.CrossRefGoogle Scholar
  4. Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083–1126.CrossRefGoogle Scholar
  5. Brodzik, M., and R. Armstrong, 2013: Northern Hemisphere EASE-Grid 2.0 Weekly Snow Cover and Sea Ice Extent, Version 4. NASA DAAC at the National Snow and Ice Data Center-Boulder, Colorado, USA.Google Scholar
  6. Chen, L. T., and R. G. Wu, 2000: Interannual and decadal variations of snow cover over Qinghai-Xizang Plateau and their relationships to summer monsoon rainfall in China. Adv. Atmos. Sci., 17(1), 18–30, doi: 10.1007/s00376-000-0040-7.CrossRefGoogle Scholar
  7. Clark, M. P., M. C. Serreze, and D. A. Robinson, 1999: Atmospheric controls on Eurasian snow extent. International Journal of Climatology, 19, 27–40, doi: 10.1002/(SICI)1097-0088 (199901)19:1<27::AID-JOC346>3.0.CO;2-N.CrossRefGoogle Scholar
  8. Cohen, J., and D. Rind, 1991: The effect of snow cover on the climate. J. Climate, 4(7), 689–706, doi: 10.1175/1520-0442 (1991)004<0689:teosco>2.0.co;2.CrossRefGoogle Scholar
  9. Cohen, J., and D. Entekhabi, 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26(3), 345–348, doi: 10.1029/1998GL900321.CrossRefGoogle Scholar
  10. Cohen, J., and D. Entekhabi, 2001: The influence of snow cover on Northern Hemisphere climate variability. Atmosphere-Ocean, 39(1), 35–53, doi: 10.1080/07055900.2001.9649665.CrossRefGoogle Scholar
  11. Cohen, J., J. C. Furtado, J. Jones, M. Barlow, D. Whittleston, and D. Entekhabi, 2014: Linking Siberian snow cover to precursors of stratospheric variability. J Climate, 27, 5422–5432, doi: 10.1175/JCLI-D-13-00779.1.CrossRefGoogle Scholar
  12. Dash, S. K., G. P. Singh, M. S. Shekhar, and A. D. Vernekar, 2005: Response of the Indian summer monsoon circulation and rainfall to seasonal snow depth anomaly over Eurasia. Climate Dyn., 24, 1–10, doi: 10.1007/s00382-004-0448-3.CrossRefGoogle Scholar
  13. Fasullo, J., 2004: A stratified diagnosis of the Indian monsoon–Eurasian snow cover relationship. J. Climate, 17, 1110–1122, doi: 10.1175/1520-0442(2004)017<1110:ASDOTI>2.0.CO;2.CrossRefGoogle Scholar
  14. Gong, G., D. Entekhabi, and J. Cohen, 2003: Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. J. Climate, 16(23), 3917–3931, doi: 10.1175/1520-0442(2003)016<3917:MNHWCR>2.0.CO;2.CrossRefGoogle Scholar
  15. Gong, G., D. Entekhabi, and J. Cohen, 2004: Orographic constraints on a modeled Siberian snow tropospheric stratospheric teleconnection pathway. J. Climate, 17(6), 1176–1189, doi: 10.1175/1520-0442(2004)017<1176:OCOAMS> 2.0.CO;2.CrossRefGoogle Scholar
  16. Gutzler, D. S., and R. D. Rosen, 1992: Interannual variability of wintertime snow cover across the Northern Hemisphere. J. Climate, 5, 1441–1447, doi: 10.1175/1520-0442(1992)005<1441:IVOWSC>2.0.CO;2.CrossRefGoogle Scholar
  17. Hay, L. E., M. P. Clark, R. L. Wilby, W. J. Gutowski, G. H. Leavesley, Z. Pan, R. W. Arritt, and E. S. Takle, 2002: Use of regional climate model output for hydrologic simulations. Journal of Hydrometeorology, 3, 571–590.CrossRefGoogle Scholar
  18. Henderson, G. R., and D. J. Leathers, 2010: European snow cover extent variability and associations with atmospheric forcings. International Journal of Climatology, 30, 1440–1451, doi: 10.1002/joc.1990.Google Scholar
  19. Henderson, G. R., D. J. Leathers, and B. Hanson, 2013: Circulation response to Eurasian versus north American anomalous snow scenarios in the northern hemisphere with an AGCM coupled to a slab ocean model. J. Climate, 26, 1502–1515, doi: 10.1175/JCLI-D-11-00465.1.CrossRefGoogle Scholar
  20. Iijima, Y., K. Masuda, and T. Ohata, 2007: Snow disappearance in Eastern Siberia and its relationship to atmospheric influences. International Journal of Climatology, 27, 169–177, doi: 10.1002/joc.1382.CrossRefGoogle Scholar
  21. Kim, Y., K.-Y. Kim, and B.-M. Kim, 2013: Physical mechanisms of European winter snow cover variability and its relationship to the NAO. Climate Dyn., 40, 1657–1669, doi: 10.1007/s00382-012-1365-5.CrossRefGoogle Scholar
  22. Kobayashi, S. Y., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93(1), 5–48, doi: 10.2151/jmsj.2015-001.CrossRefGoogle Scholar
  23. Kripalani, R. H., S. V. Singh, A. D. Vernekar, and V. Thapliyal, 1996: Empirical study on Nimbus-7 snow mass and Indian summer monsoon rainfall. International Journal of Climatology, 16, 23–24.CrossRefGoogle Scholar
  24. Kripalani, R. H., and A. Kulkarni, 1999: Climatology and variability of historical Soviet snow depth data: Some new perspectives in snow–Indian monsoon teleconnections. Climate Dyn., 15, 475–489, doi: 10.1007/s003820050294.CrossRefGoogle Scholar
  25. Kripalani, R. H., B.-J. Kim, J.-H. Oh, and S.-E. Moon, 2002: Relationship between Soviet snow and Korean rainfall. International Journal of Climatology, 22, 1313–1325, doi: 10.1002/joc.809.CrossRefGoogle Scholar
  26. McCabe, G., and D. Wolock, 2010: Long-term variability in northern hemisphere snow cover and associations with warmer winters. Climatic Change, 99, 141–153.CrossRefGoogle Scholar
  27. Morinaga, Y., S.-F. Tian, and M. Shinoda, 2003: Winter snow anomaly and atmospheric circulation in Mongolia. International Journal of Climatology, 23, 1627–1636, doi: 10.1002/joc.961.CrossRefGoogle Scholar
  28. Popova, V., 2007: Winter snow depth variability over northern Eurasia in relation to recent atmospheric circulation changes. International Journal of Climatology, 27, 1721–1733, doi: 10.1002/joc.1489.CrossRefGoogle Scholar
  29. Robinson, D. A., K. F. Dewey, and R. R. Heim Jr., 1993: Global snow cover monitoring: An update. Bull. Amer. Meteor. Soc., 74, 1689–1696.CrossRefGoogle Scholar
  30. Saito, K., J. Cohen, and D. Entekhabi, 2001: Evolution of atmospheric response to early-season Eurasian snow cover anomalies. Mon. Wea. Rev., 129(11), 2746–2760, doi: 10.1175/1520-0493(2001)129<2746:EOARTE>2.0.CO;2.CrossRefGoogle Scholar
  31. Saito, K., and J. Cohen, 2003: Correction to “The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode”. Geophys. Res. Lett., 30, 1302, doi: 10.1029/2002GL016341.Google Scholar
  32. Seager, R., Y. Kushnir, J. Nakamura, M. Ting, and N. Naik, 2010: Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys. Res. Lett., 37, L14703, doi: 10.1029/2010GL043830.CrossRefGoogle Scholar
  33. Ueda, H., M. Shinoda, and H. Kamahori, 2003: Spring northward retreat of Eurasian snow cover relevant to seasonal and interannual variations of atmospheric circulation. International Journal of Climatology, 23, 615–629, doi: 10.1002/joc.903.CrossRefGoogle Scholar
  34. Vicente-Serrano, S. M., M. Grippa, T. Le Toan, and N. Mognard, 2007: Role of atmospheric circulation with respect to the interannual variability in the date of snow cover disappearance over northern latitudes between 1988 and 2003. J. Geophys. Res., 112, D08108, doi: 10.1029/2005JD006571.CrossRefGoogle Scholar
  35. Wu, B. Y., K. Yang, and R. H. Zhang, 2009: Eurasian snow cover variability and its association with summer rainfall in China. Adv. Atmos. Sci., 26, 31–44, doi: 10.1007/s00376-009-0031-2.CrossRefGoogle Scholar
  36. Wu, R. G., and B. P. Kirtman, 2007: Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. J. Climate., 20(7), 1285–1304, doi: 10.1175/JCLI4068.1.CrossRefGoogle Scholar
  37. Yasunari, T., A. Kitoh, and T. Tokioka, 1991: Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate—a study with the MRI·GCM. J. Meteor. Soc. Japan, 69(4), 473–487.CrossRefGoogle Scholar
  38. Ye, K. H., R. G. Wu, and Y. Liu, 2015: Interdecadal change of Eurasian snow, surface temperature, and atmospheric circulation in the late 1980s. J. Geophys. Res., 120, 2738–2753, doi: 10.1002/2015JD023148.Google Scholar
  39. Ye, K. H., and N.-C. Lau, 2016: Influences of surface air temperature and atmospheric circulation on winter snow cover variability over Europe. International Journal of Climatology, doi: 10.1002/joc.4868.Google Scholar
  40. Zhang, Y. S., T. Li, and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J. Climate, 17, 2780–2793.CrossRefGoogle Scholar
  41. Zuo, Z. Y., R. H. Zhang, B. Y. Wu, and X. Y. Rong, 2012: Decadal variability in springtime snow over Eurasia: Relation with circulation and possible influence on springtime rainfall over China. International Journal of Climatology, 32, 1336–1345, doi: 10.1002/joc.2355.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Space and Earth Information ScienceThe Chinese University of Hong KongHong KongChina
  2. 2.Center for Monsoon System Research/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations