Advances in Atmospheric Sciences

, Volume 34, Issue 5, pp 576–586

Increased light, moderate, and severe clear-air turbulence in response to climate change

Open Access
Original Paper

Abstract

Anthropogenic climate change is expected to strengthen the vertical wind shears at aircraft cruising altitudes within the atmospheric jet streams. Such a strengthening would increase the prevalence of the shear instabilities that generate clear-air turbulence. Climate modelling studies have indicated that the amount of moderate-or-greater clear-air turbulence on transatlantic flight routes in winter will increase significantly in future as the climate changes. However, the individual responses of light, moderate, and severe clear-air turbulence have not previously been studied, despite their importance for aircraft operations. Here, we use climate model simulations to analyse the transatlantic wintertime clear-air turbulence response to climate change in five aviation-relevant turbulence strength categories. We find that the probability distributions for an ensemble of 21 clear-air turbulence diagnostics generally gain probability in their right-hand tails when the atmospheric carbon dioxide concentration is doubled. By converting the diagnostics into eddy dissipation rates, we find that the ensembleaverage airspace volume containing light clear-air turbulence increases by 59% (with an intra-ensemble range of 43%–68%), light-to-moderate by 75% (39%–96%), moderate by 94% (37%–118%), moderate-to-severe by 127% (30%–170%), and severe by 149% (36%–188%). These results suggest that the prevalence of transatlantic wintertime clear-air turbulence will increase significantly in all aviation-relevant strength categories as the climate changes.

Key words

turbulence climate change aviation jet stream 

References

  1. Atlas, D., J. I. Metcalf, J. H. Richter, and E. E. Gossard, 1970: The birth of “CAT” and microscale turbulence. J. Atmos. Sci., 27, 903–913.CrossRefGoogle Scholar
  2. Brown, R., 1973: New indices to locate clear-air turbulence. Meteor. Mag., 102, 347–361.Google Scholar
  3. Burbidge, R., 2016: Adapting European airports to a changing climate. Transportation Research Procedia, 14, 14–23.CrossRefGoogle Scholar
  4. Clark, T. L., W. D. Hall, R. M. Kerr, D. Middleton, L. Radke, F. M. Ralph, P. J. Neiman, and D. Levinson, 2000: Origins of aircraft-damaging clear-air turbulence during the 9 December 1992 Colorado downslope windstorm: Numerical simulations and comparison with observations. J. Atmos. Sci., 57, 1105–1131.CrossRefGoogle Scholar
  5. Coffel, E., and R. Horton, 2015: Climate change and the impact of extreme temperatures on aviation. Weather, Climate, and Society, 7, 94–102.CrossRefGoogle Scholar
  6. Colson, D., and H. A. Panofsky, 1965: An index of clear air turbulence. Quart. J. Roy. Meteor. Soc., 91, 507–513.CrossRefGoogle Scholar
  7. Delcambre, S. C., D. J. Lorenz, D. J. Vimont, and J. E. Martin, 2013: Diagnosing northern hemisphere jet portrayal in 17 CMIP3 global climate models: Twenty-first-century projections. J. Climate, 26, 4930–4946.CrossRefGoogle Scholar
  8. Ellrod, G. P., and D. I. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting, 7, 150–165.CrossRefGoogle Scholar
  9. Endlich, R. M., 1964: The mesoscale structure of some regions of clear-air turbulence. J. Atmos. Sci., 3, 261–276.Google Scholar
  10. FAA, 2006: Preventing injuries caused by turbulence. Advisory Circular 120-88A, Federal Aviation Administration, Washington, DC.Google Scholar
  11. Forster, P. M. de, and K. P. Shine, 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, 1086.CrossRefGoogle Scholar
  12. Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801.CrossRefGoogle Scholar
  13. Frehlich, R., and R. Sharman, 2004: Estimates of turbulence from numerical weather prediction model output with applications to turbulence diagnosis and data assimilation. Mon.Wea. Rev., 132, 2308–2324.CrossRefGoogle Scholar
  14. Goessling, H. F., and S. Bathiany, 2016: Why CO2 cools the middle atmosphere—A consolidating model perspective. Earth System Dynamics, 7, 697–715.CrossRefGoogle Scholar
  15. CAO, 2015: International Civil Aviation Organization (ICAO) Second High-Level Safety Conference (HLSC), Montreal, Canada, 2–5 February 2015, Working Paper on Extreme Meteorological Conditions (HLSC/15-WP/36). [Available online from www.icao.int/ Meetings/HLSC2015/Documents/WP/wp036 en.pdf].Google Scholar
  16. Irvine, E. A., B. J. Hoskins, K. P. Shine, R. W. Lunnon, and C. Froemming, 2013: Characterizing North Atlantic weather patterns for climate-optimal aircraft routing. Meteorological Applications, 20, 80–93.CrossRefGoogle Scholar
  17. Irvine, E. A., K. P. Shine, and M. A. Stringer, 2016: What are the implications of climate change for trans-Atlantic aircraft routing and flight time? Transportation Research Part D: Transport and Environment, 47, 44–53.CrossRefGoogle Scholar
  18. Jaeger, E. B., and M. Sprenger, 2007: A Northern Hemispheric climatology of indices for clear air turbulence in the tropopause region derived from ERA40 reanalysis data. J. Geophys. Res., 112(D20), D20106.CrossRefGoogle Scholar
  19. Karnauskas, K. B., J. P. Donnelly, H. C. Barkley, and J. E. Martin, 2015: Coupling between air travel and climate. Nature Clim. Change, 5, 1068–1073.CrossRefGoogle Scholar
  20. Karpechko, A., A. Lukyanov, E. Kyrö, S. Khaikin, L. Korshunov, R. Kivi, and H. Vömel, 2007: The water vapour distribution in the Arctic lowermost stratosphere during the LAUTLOS campaign and related transport processes including stratosphere–troposphere exchange. Atmos. Chem. Phys., 7, 107–119.CrossRefGoogle Scholar
  21. Kauffmann, P., 2002: The business case for turbulence sensing systems in the US air transport sector. Journal of Air Transport Management, 8, 99–107.CrossRefGoogle Scholar
  22. Kim, B., and Coauthors, 2005: System for assessing Aviation’s Global Emissions (SAGE), Version 1.5, Technical Manual FAA-EE-2005-01, Federal Aviation Administration, Washington, DC.Google Scholar
  23. Kim, J.-H., and H.-Y. Chun, 2011: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteor. Climatol., 50, 311–324.CrossRefGoogle Scholar
  24. Kim, J.-H., W. N. Chan, B. Sridhar, R. D. Sharman, P. D. Williams, and M. Strahan, 2016: Impact of the North Atlantic Oscillation on transatlantic flight routes and clear-air turbulence. J. Appl. Meteor. Climatol., 55, 763–771.CrossRefGoogle Scholar
  25. Kim, S.-H., and H.-Y. Chun, 2016: Aviation turbulence encounters detected from aircraft observations: Spatiotemporal characteristics and application to Korean Aviation Turbulence Guidance. Meteorological Applications, 23, 594–604.CrossRefGoogle Scholar
  26. Knox, J. A., D. W. McCann, and P. D. Williams, 2008: Application of the Lighthill–Ford theory of spontaneous imbalance to clear-air turbulence forecasting. J. Atmos. Sci., 65, 3292–3304.CrossRefGoogle Scholar
  27. Krozel, J., V. Klimenko, and R. Sharman, 2011: Analysis of clear-air turbulence avoidance maneuvers. Air Traffic Control Quarterly, 19, 147–168.Google Scholar
  28. Lane, T. P., R. D. Sharman, S. B. Trier, R. G. Fovell, and J. K. Williams, 2012: Recent advances in the understanding of near-cloud turbulence. Bull. Amer. Meteor. Soc., 93, 499–515.CrossRefGoogle Scholar
  29. Lee, D. S., D. W. Fahey, P. M. Forster, P. J. Newton, R. C. N. Wit, L. L. Lim, B. Owen, and R. Sausen, 2009: Aviation and global climate change in the 21st century. Atmos. Environ., 43, 3520–3537.CrossRefGoogle Scholar
  30. Lee, L., 2013: A climatological study of clear air turbulence over the North Atlantic. Master’s thesis, Dept. of Earth Sciences, Uppsala University.Google Scholar
  31. Lilly, D. K., D. E. Waco, and S. I. Adelfang, 1974: Stratospheric mixing estimated from high-altitude turbulence measurements. J. Appl. Meteor., 13, 488–493.CrossRefGoogle Scholar
  32. Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119.CrossRefGoogle Scholar
  33. MacCready, P. B., 1964: Standardization of gustiness values from aircraft. J. Appl. Meteor., 3, 439–449.CrossRefGoogle Scholar
  34. Malwitz, A., and Coauthors, 2005: System for assessing Aviation’s Global Emissions (SAGE), Version 1.5, Validation Assessment, Model Assumptions and Uncertainties. Tech. Rep. FAA-AA-EE-2005-03, Federal Aviation Administration, Washington, DC.Google Scholar
  35. Maycock, A. C., M. M. Joshi, K. P. Shine, and A. A. Scaife, 2013: The circulation response to idealized changes in stratospheric water vapor. J. Climate, 26, 545–561.CrossRefGoogle Scholar
  36. McCann, D. W., J. A. Knox, and P. D. Williams, 2012: An improvement in clear-air turbulence forecasting based on spontaneous imbalance theory: The ULTURB algorithm. Meteorological Applications, 19, 71–78.CrossRefGoogle Scholar
  37. Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon et al., Eds., Cambridge University Press, 747–846.Google Scholar
  38. Meneguz, E., H. Wells, and D. Turp, 2016: An automated system to quantify aircraft encounters with convectively induced turbulence over Europe and the Northeast Atlantic. J. Appl. Meteor. Climatol., 55, 1077–1089.CrossRefGoogle Scholar
  39. Penner, J. E., D. H. Lister, D. J. Griggs, D. J. Dokken, and M. Mc-Farland, 1999: Intergovernmental Panel on Climate Change (IPCC) special report: Aviation and the global atmosphere. Cambridge University Press, 373 pp.Google Scholar
  40. Puempel, H., and P. D. Williams, 2016: The impacts of climate change on aviation: Scientific challenges and adaptation pathways. ICAO Environmental Report 2016: On Board A Sustainable Future, 205–207.Google Scholar
  41. Reiter, E. R., 1963: Jet-stream Meteorology. University of Chicago Press, 515 pp.Google Scholar
  42. Riddaway, R. W., 1998: Notes and news. Meteorological Applications, 5, 183–188.CrossRefGoogle Scholar
  43. Romps, D. M., J. T. Seeley, D. Vollaro, and J. Molinari, 2014: Projected increase in lightning strikes in the United States due to global warming. Science, 346, 851–854.CrossRefGoogle Scholar
  44. Schwartz, B., 1996: The quantitative use of PIREPs in developing aviation weather guidance products.Wea. Forecasting, 11, 372–384.CrossRefGoogle Scholar
  45. Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37, 994–1004.CrossRefGoogle Scholar
  46. Sharman, R., C. Tebaldi, G. Wiener, and J. Wolff, 2006: An integrated approach to mid-and upper-level turbulence forecasting. Wea. Forecasting, 21, 268–287.CrossRefGoogle Scholar
  47. Sharman, R. D., and J. M. Pearson, 2017: Prediction of energy dissipation rates for aviation turbulence. Part I: Forecasting nonconvective turbulence. J. Appl. Meteor. Climatol., 56, 317–337.Google Scholar
  48. Sharman, R. D., S. B. Trier, T. P. Lane, and J. D. Doyle, 2012: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett., 39, L12803.CrossRefGoogle Scholar
  49. Sharman, R. D., L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Appl. Meteor. Climatol., 53, 1416–1432.CrossRefGoogle Scholar
  50. Shine, K. P., and Coauthors, 2003: A comparison of modelsimulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129, 1565–1588.CrossRefGoogle Scholar
  51. Simpson, I. R., 2016: Climate change predicted to lengthen transatlantic travel times. Environ. Res. Lett., 11, 031002.CrossRefGoogle Scholar
  52. Solomon, A., and L. M. Polvani, 2016: Highly significant responses to anthropogenic forcings of the midlatitude jet in the Southern Hemisphere. J. Climate, 29, 3463–3470.CrossRefGoogle Scholar
  53. Traub, M., and J. Lelieveld, 2003: Cross-tropopause transport over the eastern Mediterranean. J. Geophys. Res., 108, 4712.CrossRefGoogle Scholar
  54. Trier, S. B., and R. D. Sharman, 2016: Mechanisms influencing cirrus banding and aviation turbulence near a convectively enhanced upper-level jet stream. Mon. Wea. Rev., 144, 3003–3027.CrossRefGoogle Scholar
  55. Trier, S. B., R. D. Sharman, and T. P. Lane, 2012: Influences of moist convection on a cold-season outbreak of Clear-Air Turbulence (CAT). Mon. Wea. Rev., 140, 2477–2496.CrossRefGoogle Scholar
  56. Vallis, G. K., P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: Response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 1479–1501.CrossRefGoogle Scholar
  57. Vrancken, P., and Coauthors, 2016: Flight tests of the DELICAT airborne LIDAR system for remote clear air turbulence detection. EPJ Web of Conferences, 119, 14003.CrossRefGoogle Scholar
  58. Warner, M., 2013: Boeing: Current market outlook 2013–2032. Boeing Commercial Airplanes, Seattle, WA.Google Scholar
  59. Watkins, C. D., and K. A. Browning, 1973: The detection of clear air turbulence by radar. Physics in Technology, 4, 28–61.CrossRefGoogle Scholar
  60. Wilcox, L. J., K. P. Shine, and B. J. Hoskins, 2012: Radiative forcing due to aviation water vapour emissions. Atmos. Environ., 63, 1–13.CrossRefGoogle Scholar
  61. Wilkerson, J. T., M. Z. Jacobson, A. Malwitz, S. Balasubramanian, R. Wayson, G. Fleming, A. D. Naiman, and S. K. Lele, 2010: Analysis of emission data from global commercial aviation: 2004 and 2006. Atmos. Chem. Phys., 10, 6391–6408.CrossRefGoogle Scholar
  62. Williams, J. K., 2014: Using random forests to diagnose aviation turbulence. Machine Learning, 95, 51–70.CrossRefGoogle Scholar
  63. Williams, P. D., 2016: Transatlantic flight times and climate change. Environ. Res. Lett., 11, 024008.CrossRefGoogle Scholar
  64. Williams, P. D., and M. M. Joshi, 2013: Intensification of winter transatlantic aviation turbulence in response to climate change. Nature Clim. Change, 3, 644–648.CrossRefGoogle Scholar
  65. Williams, P. D., and M. M. Joshi, 2016: Clear-air turbulence in a changing climate. Aviation Turbulence: Processes, Detection, Prediction, R. Sharman and T. Lane, Eds., Springer International Publishing, 465–480.CrossRefGoogle Scholar
  66. Williams, P. D., P. L. Read, and T. W. N. Haine, 2003: Spontaneous generation and impact of inertia–gravity waves in a stratified, two-layer shear flow. Geophys. Res. Lett., 30, 2255.Google Scholar
  67. Williams, P. D., T. W. N. Haine, and P. L. Read, 2005: On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear. J. Fluid Mech., 528, 1–22.CrossRefGoogle Scholar
  68. Williams, P. D., T. W. N. Haine, and P. L. Read, 2008: Inertia–gravity waves emitted from balanced flow: Observations, properties, and consequences. J. Atmos. Sci., 65, 3543–3556.CrossRefGoogle Scholar
  69. Wolff, J. K., and R. D. Sharman, 2008: Climatology of upper-level turbulence over the contiguous United States. J. Appl. Meteor. Climatol., 47, 2198–2214.CrossRefGoogle Scholar

Copyright information

© The Author 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations