Skip to main content
Log in

Interdecadal variability of the Afro-Asian summer monsoon system

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The Afro-Asian summer monsoon is a zonally planetary-scale system, with a large-scale rainbelt covering Africa, South Asia and East Asia on interdecadal timescales both in the past century (1901–2014) and during the last three decades (1979–2014). A recent abrupt change of precipitation occurred in the late 1990s. Since then, the entire rainbelt of the Afro-Asia monsoon system has advanced northwards in a coordinated way. Consistent increases in precipitation over the Huanghe–Huaihe River valley and the Sahel are associated with the teleconnection pattern excited by the warm phase of the Atlantic Multidecadal Oscillation (AMO). A teleconnection wave train, with alternating cyclones/anticyclones, is detected in the upper troposphere. Along the teleconnection path, the configuration of circulation anomalies in North Africa is characterized by coupling of the upper-level anticyclone (divergence) with low-level thermal low pressure (convergence), facilitating the initiation and development of ascending motions in the Sahel. Similarly, in East Asia, a coupled circulation pattern also excites ascending motion in the Huanghe–Huaihe River valley. The synchronous increase in precipitation over the Sahel and Huanghe–Huaihe River valley can be attributed to the co-occurrences and in-phase changes of ascending motion. On the other hand, the warm phase of the AMO results in significant warming in the upper troposphere in North Africa and the northern part of East Asia. Such warming contributes to intensification of the tropical easterly jet through increasing the meridional pressure gradient both at the entrance region (East Asia) and the exit region (Africa). Accordingly, precipitation over the Sahel and Huanghe–Huaihe River valley intensifies, owing to ageostrophic secondary cells. The results of this study provide evidence for a consistent and holistic interdecadal change in the Afro-Asian summer monsoon.

摘要

亚非季风系统是一个横跨非洲, 南亚和东亚的纬向行星尺度系统, 在过去百年(1901-2014)和近三十年(1979-2014)均体现出完整的大尺度雨带. 最近, 亚非夏季风降水在20世纪90年代中后期出现了年代际转折, 季风雨带出现了一致北移的变化. 从20世纪90年代中后期, 萨赫勒地区和我国黄淮地区降水增多, 呈同相变化. 造成这种变化的原因在于大气环流从温, 压, 风三个方面对AMO暖位相的耦合响应(coupled response of). AMO暖位相通过在对流层上层激发出伴随气旋反气旋的东传的Rossby波列. 沿遥相关传播路径, 在北非地区, 高层为反气旋和低层为热低压, 这种高层辐散, 低层辐合的环流异常配置, 有利于激发和加强萨赫勒地区的上升运动. 同样地, 在东亚地区, 高低层耦合的环流配置也激发了黄淮地区的上升运动. 萨赫勒地区和黄淮地区共同发生和同相变化的上升运动, 导致了这两个地区降水同步增加. 另一方面, AMO暖位相使得对流层上层温度在北非和东亚北部地区显著增暖, 进而加强了热带东风急流入口区(东亚)和出口区(北非)的经向气压梯度, 这对热带东风急流的加强和北移起到了关键的作用. 同时, 由于热带东风急流入口区和出口区非地转次级环流的作用, 萨赫勒地区和中国黄淮地区降水增加.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4, 1147–1167.

    Article  Google Scholar 

  • Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004. J. Climate, 19, 5816–5842.

    Article  Google Scholar 

  • An, Z. S., and Coauthors, 2015: Global monsoon dynamics and climate change. Annual Review of Earth and Planetary Sciences, 43, 29–77.

    Article  Google Scholar 

  • Baines, P. G., and C. K. Folland, 2007: Evidence for a rapid global climate shift across the late 1960s. J. Climate, 20(12), 2721–2744.

    Article  Google Scholar 

  • Biasutti, M., and A. Giannini, 2006: Robust Sahel drying in response to late 20th century forcings. Geophys. Res. Lett., 33(11), L11706.

    Article  Google Scholar 

  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106.

    Article  Google Scholar 

  • Chao, W. C., 2000: Multiple quasi equilibria of the ITCZ and the origin of monsoon onset. J. Atmos. Sci., 57(5), 641–652.

    Article  Google Scholar 

  • Chen, H., Y. H. Ding, and J. H. He, 2007: The structure and variation of tropical easterly jet and its relationship with the monsoon rainfall in Asia and Africa. Chinese Journal of Atmospheric Sciences, 31(5), 926–936. (in Chinese)

    Google Scholar 

  • Cressman, G. P., 1984: Energy transformations in the East Asia-West Pacific jet stream. Mon. Wea. Rev., 112(3), 563–571.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137(656), 553–597.

    Article  Google Scholar 

  • Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the northern hemisphere summer. J. Climate, 18(17), 3483–3505.

    Article  Google Scholar 

  • Ding, Y. H., Z. Y. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. International Journal of Climatology, 28(9), 1139–1161.

    Article  Google Scholar 

  • Ding, Y. H., and Coauthors, 2013: Interdecadal and interannual variabilities of the Asian summer monsoon and its projection of future change. Chinese Journal of Atmospheric Sciences, 37(2), 253–280. (in Chinese)

    Google Scholar 

  • Dong, B. W., and R. Sutton, 2015: Dominant role of greenhousegas forcing in the recovery of Sahel rainfall. Nature Climate Change, 5, 757–760.

    Article  Google Scholar 

  • Enfield, D. B., A. M. Mestas-Nu˜nez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28(10), 2077–2080.

    Article  Google Scholar 

  • Feng, S., and Q. Hu, 2008: How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys. Res. Lett., 35(1), L01707.

    Article  Google Scholar 

  • Gadgil, S., 2003: The Indian monsoon and its variability. Annual Review of Earth and Planetary Sciences, 31, 429–467.

    Article  Google Scholar 

  • Giannini, A., 2015: Hydrology: Climate change comes to the Sahel. Nature Climate Change, 5(8), 720–721.

    Article  Google Scholar 

  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302(5647), 1027–1030.

    Article  Google Scholar 

  • Gupta, A. K., D. M. Anderson, and J. T. Overpeck, 2003: Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421(6921), 354–357.

    Article  Google Scholar 

  • Huang, R. H., G. Huang, and Z. G. Wei, 2004: Climate variations of the summer monsoon over China. East Asian Monsoon, 2, 213–268.

    Article  Google Scholar 

  • Hulme, M., 1992: A 1951-80 global land precipitation climatology for the evaluation of general circulation models. Climate Dyn., 7, 57–72.

    Article  Google Scholar 

  • Ji, J. J., N. Petit-Maire, and Z. W. Yan, 1993: The last 1000 years: Climatic change in arid Asia and Africa. Global and Planetary Change, 7, 203–210.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77(3), 437–471.

    Article  Google Scholar 

  • Koteswaram, P., 1958: The easterly jet stream in the tropics. Tellus, 10(1), 43–57.

    Article  Google Scholar 

  • Krishnamurti, T. N., 1971: Observational study of the tropical upper tropospheric motion field during the Northern Hemisphere summer. J. Appl. Meteor., 10(6), 1066–1096.

    Article  Google Scholar 

  • Kucharski, F., A. Bracco, J. H. Yoo, A. M. Tompkins, L. Feudale, P. Ruti, and A. Dell’Aquila, 2009: A Gill-Matsunotype mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Quart. J. Roy. Meteor. Soc., 135(640), 569–579.

    Article  Google Scholar 

  • Lavaysse, C., 2015: Warming trends: Saharan desert warming. Nature Climate Change, 5(9), 807–808.

    Article  Google Scholar 

  • Liu, Y., and J. C. H. Chiang, 2012: Coordinated abrupt weakening of the Eurasian and North African monsoons in the 1960s and links to extratropical North Atlantic cooling. J. Climate, 25(10), 3532–3548.

    Article  Google Scholar 

  • Liu, Y. W., J. C. H. Chiang, C. Chou, and C. M. Patricola, 2014a: Atmospheric teleconnection mechanisms of extratropical North Atlantic SST influence on Sahel rainfall. Climate Dyn., 43(9–10), 2797–2811.

    Article  Google Scholar 

  • Liu, Z. Y., and Coauthors, 2014b: Chinese cave records and the East Asia summer monsoon. Quaternary Science Reviews, 83, 115–128.

    Article  Google Scholar 

  • Lu, R. Y., and B. W. Dong, 2008: Response of the Asian summer monsoon to weakening of Atlantic thermohaline circulation. Adv. Atmos. Sci., 25(5), 723–736, doi: 10.1007/s00376-008-0723-z.

    Article  Google Scholar 

  • Lu, R. Y., B. W. Dong, and H. Ding, 2006: Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys. Res. Lett., 33(24), L24701.

    Article  Google Scholar 

  • McManus, J. F., R. Francois, J.-M. Gherardi, L. D. Keigwin, and S. Brown-Leger, 2004: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428(6985), 834–837.

    Article  Google Scholar 

  • Shanahan, T. M., and Coauthors, 2009: Atlantic forcing of persistent drought in West Africa. Science, 324(5925), 377–380.

    Article  Google Scholar 

  • Si, D., and Y. H. Ding, 2013: Decadal change in the correlation pattern between the Tibetan Plateau winter snow and the East Asian summer precipitation during 1979–2011. J. Climate, 26(19), 7622–7634.

    Article  Google Scholar 

  • Si, D., and Y. H. Ding, 2016: Oceanic forcings of the interdecadal variability in East Asian summer rainfall. J. Climate, 29, 7633–7649, doi: 10.1175/JCLI-D-15-0792.1.

    Article  Google Scholar 

  • Si, D., Y. H. Ding, and Y. J. Liu, 2009: Decadal northward shift of the Meiyu belt and the possible cause. Chinese Science Bulletin, 54, 4742–4748.

    Google Scholar 

  • Song, Y., and J. J. Ji, 2001: The interdecadal abrupt change of the African-Asian summer monsoon in the 1960s. Chinese Journal of Atmospheric Sciences, 25(2), 200–208. (in Chinese)

    Google Scholar 

  • Song, Y., J. J. Ji, and D. Sun, 2009: Global climatic anomalous background analyses of the Asian-African summer monsoon weakening in the mid-1960s. Chinese Journal of Atmospheric Sciences, 33(2), 313–324. (in Chinese)

    Google Scholar 

  • Stager, J. C., D. B. Ryves, B. M. Chase, and F. S. R. Pausata, 2011: Catastrophic drought in the Afro-Asian monsoon region during Heinrich event 1. Science, 331(6022), 1299–1302.

    Article  Google Scholar 

  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13(22), 3969–3993.

    Article  Google Scholar 

  • Wang, B., 1992: The vertical structure and development of the ENSO anomaly mode during 1979–1989. J. Atmos. Sci., 49(8), 698–712.

    Article  Google Scholar 

  • Wang, H. J., and K. Fan, 2013: Recent changes in the East Asian monsoon. Chinese Journal of Atmospheric Sciences, 37(2), 313–318. (in Chinese)

    Google Scholar 

  • Wang, P. X., 2009: Global monsoon in a geological perspective. Chinese Science Bulletin, 54(7), 1113–1136.

    Google Scholar 

  • Wang, Y. M., S. L. Li, and D. H. Luo, 2009: Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J. Geophys. Res., 114(D2), D02112.

    Google Scholar 

  • Webster, P. J., V. O. Maga˜na, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103(C7), 14451–14510.

    Article  Google Scholar 

  • Wu, B., T. J. Zhou, and T. Li, 2016: Impacts of the Pacific–Japan and Circumglobal teleconnection patterns on the interdecadal variability of the East Asian Summer Monsoon. J. Climate, 29(9), 3253–3271.

    Article  Google Scholar 

  • Yan, Z. W., and N. Petit-Maire, 1995: On the relationship between global thermal variations and the wet/dry alterations in the Asian and African monsoon areas. Acta Geographica Sinica, 50, 471–479. (in Chinese)

    Google Scholar 

  • Yang, M. Z., and Y. H. Ding, 2007: A study of the impact of south Indian Ocean Dipole on the summer rainfall in China. Chinese Journal of Atmospheric Sciences, 31(4), 685–694. (in Chinese)

    Google Scholar 

  • Ye, J. L., S. W. Wang, X. D. Li, and Z. C. Zhao, 1996: Variability of summer rainfall in the monsoon region of Asia-Africa. Climatic and Environmental Research, 1(2), 173–184. (in Chinese)

    Google Scholar 

  • Zeng, Z. M., and Q. Y. Guo, 1982: The relationship between the summer precipitation over Asia-Africa monsoon regions and the tropical easterly jetstream (TEJ). Scientia Atmospherica Sinica, 6(3), 283–292. (in Chinese)

    Google Scholar 

  • Zhang, P. Z., and Coauthors, 2008: A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 322, 940–942.

    Article  Google Scholar 

  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33(17), L17712.

    Article  Google Scholar 

  • Zhang, R. H., 2015: Changes in East Asian summer monsoon and summer rainfall over eastern China during recent decades. Science Bulletin, 60, 1222–1224.

    Article  Google Scholar 

  • Zhou, T. J., R. C. Yu, H. M. Li, and B. Wang, 2008: Ocean forcing to changes in global monsoon precipitation over the recent half-century. J. Climate, 21(15), 3833–3852.

    Article  Google Scholar 

  • Zhu, Y. L., H. J. Wang, W. Zhou, and J. H. Ma, 2011: Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dyn., 36(7–8), 1463–1473.

    Article  Google Scholar 

Download references

Acknowledgements

This study was jointly supported by the National Basic Research Program of China (Grant Nos. 2013CB430203 and 2012CB417205), the National Key Research and Development Program of China (during the 13th Five-year Plan) (Grant No. 2016YFA0601501), and the China Meteorological Special Programs (Grant No. GYHY201306033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihui Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ding, Y. & Li, W. Interdecadal variability of the Afro-Asian summer monsoon system. Adv. Atmos. Sci. 34, 833–846 (2017). https://doi.org/10.1007/s00376-017-6247-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6247-7

Key words

关键词

Navigation