Advances in Atmospheric Sciences

, Volume 34, Issue 5, pp 613–622 | Cite as

A new parameterization of canopy radiative transfer for land surface radiation models

  • Feng Zhang
  • Yadong Lei
  • Jia-Ren Yan
  • Jian-Qi Zhao
  • Jiangnan Li
  • Qiudan Dai
Original Paper

Abstract

A new parameterization of canopy asymmetry factor on phase function, which is dependent on the leaf normal distribution and leaf reflection/transmission, is derived. This new parameterization is much more accurate than the existing scheme. In addition, the new solutions for both the diffuse and direct radiation can be obtained using the Eddington approximation. It is found that the direct radiation can be described as a function of the diffuse radiation. This new approach offers a substantial improvement in accuracy, as compared with the hemispheric constant method, for both isotropic and anisotropic cases. Given the analytical nature of the solution and its high accuracy, we recommend the new parameterization for application in land surface radiation modeling.

Key words

radiative transfer canopy asymmetry factor Eddington approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biswas, G., 2007: Some new leaf normal-angle distribution models and their influence on geometry functions and area scattering phase functions related to radiative transfer problems in vegetative canopies. Journal of Quantitative Spectroscopy and Radiative Transfer, 108, 197–219.CrossRefGoogle Scholar
  2. Chou, M. D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49, 762–772.CrossRefGoogle Scholar
  3. Coakley, J. A., R. D. Cess, and F. B. Yurevich, 1983: The effect of tropospheric aerosols on the earth’s radiation budget: A parameterization for climate models. J. Atmos. Sci., 40, 116–138.CrossRefGoogle Scholar
  4. Coakley, J. A. Jr., and P. Chylek, 1975: The two-stream approximation in radiative transfer: Including the angle of the incident radiation. J. Atmos. Sci., 32, 409–418.CrossRefGoogle Scholar
  5. Dai, Q. D., and S. F. Sun, 2006: A generalized layered radiative transfer model in the vegetation canopy. Adv. Atmos. Sci., 23(2), 243–257, doi: 10.1007/s00376-006-0243-7.CrossRefGoogle Scholar
  6. Dai, Q. D., and S. F. Sun, 2007a: A comparison of two canopy radiative models in land surface processes. Adv. Atmos. Sci., 24(3), 421–434, doi: 10.1007/s00376-007-0421-2.CrossRefGoogle Scholar
  7. Dai, Q. D., and S. F. Sun, 2007b: A simplified scheme of the generalized layered radiative transfer model. Adv. Atmos. Sci., 24(2), 213–226, doi: 10.1007/s00376-007-0213-8.CrossRefGoogle Scholar
  8. De Ridder, K., 2001: Radiative transfer in the IAGL land surface model. J. Appl. Meteor., 36, 12–21.CrossRefGoogle Scholar
  9. Dickinson, R. E., 1983: Land surface processes and climatesurface albedos and energy balance. Advances in Geophysics, 25, 305–353.CrossRefGoogle Scholar
  10. Henyey, L. G., and J. L. Greenstein, 1941: Diffuse radiation in the galaxy. Astrophysical Journal, 93, 70–83.CrossRefGoogle Scholar
  11. Joseph, J. H., W. J. Wiscombe, and J. A. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 2452–2459.CrossRefGoogle Scholar
  12. Kylling, A., K. Stamnes, and S.-C. Tsay, 1995: A reliable and efficient two-stream algorithm for spherical radiative transfer: Documentation of accuracy in realistic layered media. Journal of Atmospheric Chemistry, 21, 115–150.CrossRefGoogle Scholar
  13. Li, J., and V. Ramaswamy, 1996: Four-stream spherical harmonic expansion approximation for solar radiative transfer. J. Atmos. Sci., 53, 1174–1186.CrossRefGoogle Scholar
  14. Liou, K.-N., 1974: Analytic two-stream and four-stream solutions for radiative transfer. J. Atmos. Sci., 31, 1473–1475.CrossRefGoogle Scholar
  15. Lu, P., H. Zhang, and J. N. Li, 2009: A comparison of twostream DISORT and Eddington radiative transfer schemes in a real atmospheric profile. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 129–138.CrossRefGoogle Scholar
  16. Meador, W. E., and W. R. Weaver, 1980: Two-stream approximations to radiative transfer in planetary atmospheres—A unified description of existing methods and a new improvement. J. Atmos. Sci., 37, 630–643.CrossRefGoogle Scholar
  17. Myneni, R. B., G. Asrar, and E. T. Kanemasu, 1987: Light scattering in plant canopies: The method of successive orders of scattering approximations (SOSA). Agricultural and Forest Meteorology, 39, 1–12.CrossRefGoogle Scholar
  18. Myneni, R. B., J. Ross, and G. Asrar, 1989: A review on the theory of photon transport in leaf canopies in slab geometry. Agricultural and Forest Meteorology, 45, 1–153.CrossRefGoogle Scholar
  19. Nakajima, T., M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 4869–4878.CrossRefGoogle Scholar
  20. Norman, J. M., and P. G. Jarvis, 1975: Photosynthesis in Sitka spruce (Piceasitchensis (Bong.) Carr.): V. Radiation penetration theory and a test case. Journal of Applied Ecology, 12, 839–878.Google Scholar
  21. Otto, S., and T. Trautmann, 2008: A note on g-functions within the scope of radiative transfer in turbid vegetation media. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 2813–2819.CrossRefGoogle Scholar
  22. Picca, P., and R. Furfaro, 2013: Analytical discrete ordinate method for radiative transfer in dense vegetation canopies. Journal of Quantitative Spectroscopy and Radiative Transfer, 118, 60–69.CrossRefGoogle Scholar
  23. Ross, J., 1981: The Radiation Regime and Architecture of Plant Stands. Springer, 391pp.CrossRefGoogle Scholar
  24. Sellers, P. J., 1985: Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens., 6, 1335–1372.CrossRefGoogle Scholar
  25. Shultis, K., and R. B. Myneni, 1988: Radiative transfer in vegetation canopies with anisotropic scattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 39, 115–129.CrossRefGoogle Scholar
  26. Tian, Y. H., R. E. Dickinson, and L. M. Zhou, 2007: Four-stream isosector approximation for canopy radiative transfer. J. Geophys. Res., 112(D04107), doi:10.1029/2006JD007545.Google Scholar
  27. Yu M., G. Li., Wang, H. S. Chen, 2016: Quantifying the impacts of land surface schemes and dynamic vegetation on the model dependency of projected changes in surface energy and water budgets. J. Adv. Model. Earth Sys., 8(1), 370–386.CrossRefGoogle Scholar
  28. Zhang, F., and J. N. Li, 2013: Doubling-adding method for deltafour-stream spherical harmonic expansion approximation in radiative transfer parameterization. J. Atmos. Sci., 70, 3084–3101.CrossRefGoogle Scholar
  29. Zhang, F., J. N. Li, H. Zhang, L. M. Ma, and X. J. Zhou, 2013a: On the relationship between direct and diffuse radiation. Journal of Quantitative Spectroscopy and Radiative Transfer, 115, 60–65.CrossRefGoogle Scholar
  30. Zhang, F., Z. P. Shen, J. N. Li, X. J. Zhou, and L. M. Ma, 2013b: Analytical delta-four-stream doubling-adding method for radiative transfer parameterizations. J. Atmos. Sci., 70, 794–808.CrossRefGoogle Scholar
  31. Zhou, W. Y., P.W. Guo, L. Yong, K.-N. Liou, G. Yu, and Y. K. Xue, 2009: Four-stream radiative transfer parameterization scheme in a land surface process model. Acta Meteorologica Sinica, 23, 105–115.Google Scholar
  32. Wang Z., S. C. Cui, J. Yang, H. Y. Gao, Chao Liu, Z. B. Zhang, 2017: A novel hybrid scattering order-dependent variance reduction method for Monte Carlo simulations of radiative transfer in cloudy atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 189, 283–302.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Feng Zhang
    • 1
  • Yadong Lei
    • 1
  • Jia-Ren Yan
    • 1
  • Jian-Qi Zhao
    • 2
  • Jiangnan Li
    • 3
  • Qiudan Dai
    • 2
  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisasterNanjing University of Information Science & TechnologyNanjingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Canadian Center for Climate Modeling and AnalysisUniversity of VictoriaBritish ColumbiaCanada

Personalised recommendations