An abrupt rainfall decrease over the Asian inland plateau region around 1999 and the possible underlying mechanism

Abstract

A decadal change in summer rainfall in the Asian inland plateau (AIP) region is identified around 1999. This decadal change is characterized by an abrupt decrease in summer rainfall of about 15.7% of the climatological average amount, leading to prolonged drought in the Asian inland plateau region. Both the surface air temperature and potential evapotranspiration in the AIP show a significant increase, while the soil moisture exhibits a decrease, after the late 1990s. Furthermore, the normalized difference vegetation index shows an apparent decreasing trend during 1999–2007. Three different drought indices—the standardized precipitation index, the standardized precipitation evapotranspiration index, and the self-calibrating Palmer drought severity index—present pronounced climate anomalies during 1999–2007, indicating dramatic drought exacerbation in the region after the late 1990s. This decadal change in the summer rainfall may be attributable to a wave-like teleconnection pattern from Western Europe to Asia. A set of model sensitivity experiments suggests that the summer warming sea surface temperature in the North Atlantic could induce this teleconnection pattern over Eurasia, resulting in recent drought in the AIP region.

This is a preview of subscription content, log in to check access.

References

  1. Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2-LM2 Evaluation with prescribed SST simulations. J. Climate, 17(24), 4641–4673.

    Article  Google Scholar 

  2. Bai, Y. F., J. G. Wu, Q. Xing, Q. M. Pan, J. H. Huang, D. L. Yang, and X. G. Han, 2008: Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 89(8), 2140–2153, doi: 10.1890/07-0992.1.

    Article  Google Scholar 

  3. Bao, G., Y. Liu, N. Liu, and H. W. Linderholm, 2015: Drought variability in eastern Mongolian Plateau and its linkages to the large-scale climate forcing. Climate Dyn., 44(3–4), 717–733, doi: 10.1007/s00382-014-2273-7.

    Article  Google Scholar 

  4. Chen, G. S., and R. H. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in Northwest China. J. Climate, 25(22), 7834–7851, doi: 10.1175/jcli-d-11-00684.1.

    Article  Google Scholar 

  5. Chen, H. P., and J. Q. Sun, 2015: Changes in drought characteristics over China using the standardized precipitation evapotranspiration index. J. Climate, 28(13), 5430–5447, doi: 10.1175/jcli-d-14-00707.1.

    Article  Google Scholar 

  6. Chen, M. Y., P. P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3(3), 249–266, doi: 10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    Article  Google Scholar 

  7. Chen, W., M. Takahashi, and H.–F. Graf, 2003: Interannual variations of stationary planetary wave activity in the northern winter troposphere and stratosphere and their relations to NAM and SST. J. Geophys. Res., 108(D24), 4797, doi: 10.1029/2003JD003834.

    Google Scholar 

  8. Chen, W., D. Q. Zhu, H. Z. Liu, and S. F. Sun, 2009: Land-air interaction over arid/semi-arid areas in China and its impact on the East Asian summer monsoon. I: Calibration of the Land Surface Model (BATS) using multicriteria methods. Adv. Atmos. Sci., 26(6), 1088–1098, doi: 10.1007/s00376-009-8187-3.

    Article  Google Scholar 

  9. Chen, X. Y., and K.-K. Tung, 2014: Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345(6199), 897–903, doi: 10.1126/science.1254937.

    Article  Google Scholar 

  10. Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. I: Formulation and simulation characteristics. J. Climate, 19(5), 643–674, doi: 10.1175/JCLI 3629.1.

    Article  Google Scholar 

  11. Drijfhout, S. S., A. T. Blaker, S. A. Josey, A. J. G. Nurser, B. Sinha, and M. A. Balmaseda, 2014: Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett., 41(22), 7868–7874, doi: 10.1002/2014 gl061456.

    Article  Google Scholar 

  12. Endo, N., T. Kadota, J. Matsumoto, B. Ailikun, and T. Yasunari, 2006: Climatology and trends in summer precipitation characteristics in Mongolia for the period 1960–98. J. Meteor. Soc. Japan, 84(3), 543–551, doi: 10.2151/jmsj.84.543.

    Article  Google Scholar 

  13. Gu, W., C. Y. Li, X. Wang, W. Zhou, and W. J. Li, 2009: Linkage between mei-yu precipitation and North Atlantic SST on the decadal timescale. Adv. Atmos. Sci., 26(1), 101–108, doi: 10.1007/s00376-009-0101-5. doi: 10.1007/s00376-009-0101-5

    Article  Google Scholar 

  14. Huang, J., S. L. Sun, Y. Xue, and J. C. Zhang, 2015: Changing characteristics of precipitation during 1960–2012 in Inner Mongolia, northern China. Meteor. Atmos. Phys., 127(3), 257–271, doi: 10.1007/s00703-014-0363-z.

    Article  Google Scholar 

  15. Huang, J. P., H. P. Yu, X. D. Guan, G. Y. Wang, and R. X. Guo, 2016: Accelerated dryland expansion under climate change. Nature Climate Change, 6(2), 166–171, doi: 10.1038/nclimate2837.

    Article  Google Scholar 

  16. Huang, R. H., Y. Liu, and T. Feng, 2013: Interdecadal change of summer precipitation over Eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes. Chinese Science Bulletin, 58(12), 1339–1349, doi: 10.1007/s11434-012-5545-9.

    Article  Google Scholar 

  17. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77(3), 437–471, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  18. Lepage, Y., 1971: A combination of Wilcoxon’s and Ansari-Bradley’s statistics. Biometrika, 58(1), 213–217, doi: 10.1093/biomet/58.1.213.

    Article  Google Scholar 

  19. Li, S. L., 2004: Impact of northwest Atlantic SST anomalies on the circulation over the Ural Mountains during early winter. J. Meteor. Soc. Japan, 82(4), 971–988, doi: 10.2151/jmsj.2004.971.

    Article  Google Scholar 

  20. Lin, S.-J., 2004: A “Vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132(10), 2293–2307, doi: 10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    Article  Google Scholar 

  21. Liu, Y., G. Huang, and R. H. Huang, 2011: Inter-decadal variability of summer rainfall in Eastern China detected by the Lepage test. Theor. Appl. Climatol., 106(3–4), 481–488, doi: 10.1007/s00704-011-0442-8.

    Article  Google Scholar 

  22. Liu, Y. Y., L. Wang, W. Zhou, and W. Chen, 2014: Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Climate Dyn., 42(11–12), 2817–2839, doi: 10.1007/s00382-014-2163-z.

    Article  Google Scholar 

  23. Ma, Z. G., and C. B. Fu, 2006: Some evidence of drying trend over northern China from 1951 to 2004. Chinese Science Bulletin, 51(23), 2913–2925, doi: 10.1007/s11434-006-2159-0.

    Article  Google Scholar 

  24. McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Preprints, 8th Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

    Google Scholar 

  25. Milly, P. C. D., and A. B. Shmakin, 2002: Global modeling of land water and energy balances. I: The land dynamics (LaD) model. Journal of Hydrometeorology, 3(3), 283–299, doi: 10.1175/1525-7541(2002)003<0283:GMOLWA>2.0.CO;2.

    Article  Google Scholar 

  26. Mu, S. J., H. F. Yang, J. L. Li, Y. Z. Chen, C. C. Gang, W. Zhou, and W. M. Ju, 2013: Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia, China. Journal of Geographical Sciences, 23(2), 231–246, doi: 10.1007/s11442-013-1006-x.

    Article  Google Scholar 

  27. Myneni, R. B., F. G. Hall, P. J. Sellers, and A. L. Marshak, 1995: The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens., 33(2), 481–486, doi: 10.1109/36.377948.

    Article  Google Scholar 

  28. Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running, 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625), 1560–1563, doi: 10.1126/science.1082750.

    Article  Google Scholar 

  29. Palmer, W. C., 1965: Meteorological drought. Research Paper No 45, US Dept of Commerce, 58.

    Google Scholar 

  30. Peng, S. S., and Coauthors, 2013: Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: A modeling analysis. Agricultural and Forest Meteorology, 178–179, 46–55, doi: 10.1016/j.agrformet.2013.02.002.

    Article  Google Scholar 

  31. Pettorelli, N., J. O. Vik, A. Mysterud, J. M. Gaillard, C. J. Tucker, and N. C. Stenseth, 2005: Using the satellitederived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution, 20(9), 503–510, doi: 10.1016/j.tree. 2005.05.011.

    Article  Google Scholar 

  32. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), doi: 10.1029/2002JD002670.

    Google Scholar 

  33. Roerink, G. J., M. Menenti, W. Soepboer, and Z. Su, 2003: Assessment of climate impact on vegetation dynamics by using remote sensing. Physics and Chemistry of the Earth, Parts A/B/C, 28(1–3), 103–109, doi: 10.1016/s1474-7065(03) 00011-1.

    Article  Google Scholar 

  34. Running, S. W., 1990: Estimating terrestrial primary productivity by combining remote sensing and ecosystem simulation. Remote Sensing of Biosphere Functioning, R. J. Hobbs and H. A. Mooney, Eds., Springer-Verlag, 65–86, doi: 10.1007/978-1-4612-3302-24.

    Google Scholar 

  35. Sato, T., F. Kimura, and A. Kitoh, 2007: Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol., 333(1), 144–154, doi: 10.1016/j.jhydrol.2006.07.023.

    Article  Google Scholar 

  36. Takaya, K., and H. Nakamura, 2001: A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58(6), 608–627, doi: 10.1175/1520-0469(2001)058 <0608:AFOAPI>2.0.CO;2.

    Article  Google Scholar 

  37. Tao, S. L., and Coauthors, 2015: Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA, 112(7), 2281–2286, doi: 10.1073/pnas.1411748112.

    Article  Google Scholar 

  38. Trenberth, K. E., J. T. Fasullo, G. Branstator, and A. S. Phillips, 2014: Seasonal aspects of the recent pause in surface warming. Nature Climate Change, 4(10), 911–916, doi: 10.1038/NCLIMATE2341.

    Article  Google Scholar 

  39. Ueda, H., Y. Kamae, M. Hayasaki, A. Kitoh, S. Watanabe, Y. Miki, and A. Kumai, 2015: Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon. Nature Commun., 6, 8854, doi: 10.1038/ncomms9854.

    Article  Google Scholar 

  40. Van der Schirier, Barichivich, Briffa and Jones, 2013: A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res., 118(10), 4025–4048, doi: 10.1002/jgrd.50355.

    Google Scholar 

  41. Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23(7), 1696–1718, doi: 10.1175/2009jcli2909.1.

    Article  Google Scholar 

  42. Wang, B., and Z. Fan, 1999: Choice of south Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638.

    Article  Google Scholar 

  43. Wang, L., and W. Chen, 2014: A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. International Journal of Climatology, 34(6), 2059–2078, doi: 10.1002/joc.3822.

    Article  Google Scholar 

  44. Wang, L., W. Chen, and W. Zhou, 2014: Assessment of future drought in Southwest China based on CMIP5 multimodel projections. Adv. Atmos. Sci., 31(5), 1035–1050, doi: 10.1007/s00376-014-3223-3.

    Article  Google Scholar 

  45. Wang, Z. W., P. M. Zhai, and H. T. Zhang, 2003: Variation of drought over northern China during 1950–2000. Journal of Geographical Sciences, 13(4), 480–487, doi: 10.1007/BF 02837887.

    Article  Google Scholar 

  46. Wei, K., and L. Wang, 2013: Reexamination of the aridity conditions in arid Northwestern China for the last decade. J. Climate, 26(23), 9594–9602, doi: 10.1175/jcli-d-12-00605.1.

    Article  Google Scholar 

  47. Wells, N., S. Goddard, and M. J. Hayes, 2004: A self-calibrating Palmer drought serivity index. J. Climate, 17, 2335–2351, doi: 10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2.

    Article  Google Scholar 

  48. Wu, R. G., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. T. Gao, 2010: Changes in the relationship between Northeast China summer temperature and ENSO. J. Geophys. Res., 115(D21), doi: 10.1029/2010jd014422.

    Google Scholar 

  49. Wu, R. G., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. T. Gao, 2011: Northeast China summer temperature and North Atlantic SST. J. Geophys. Res., 116(D16), doi: 10.1029/2011jd 015779.

    Google Scholar 

  50. Xu, Z. Q., K. Fan, and H. J. Wang, 2015: Decadal variation of summer precipitation over China and associated atmospheric circulation after the late 1990s. J. Climate, 28(10), 4086–4106, doi: 10.1175/jcli-d-14-00464.1.

    Article  Google Scholar 

  51. Xue, X., W. Chen, D. Nath, and D. W. Zhou, 2015: Whether the decadal shift of South Asia High intensity around the late 1970s exists or not? Theor. Appl. Climatol., 120, 673–683, doi: 10.1007/s00704-014-1200-5.

    Article  Google Scholar 

  52. Yamanaka, T., M. Tsujimura, D. Oyunbaatar, and G. Davaa, 2007: Isotopic variation of precipitation over eastern Mongolia and its implication for the atmospheric water cycle. J. Hydrol., 333(1), 21–34, doi: 10.1016/j.jhydrol.2006.07.022.

    Article  Google Scholar 

  53. Yonetani, T., and G. J. McCabe, Jr., 1994: Abrupt changes in regional temperature in the conterminous United States, 1895–1989. Climate Research, 4, 13–23, doi: 10.3354/cr004013.

    Article  Google Scholar 

  54. Zhai, J. Q., B. D. Su, V. Krysanova, T. Vetter, C. Gao, and T. Jiang, 2010: Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J. Climate, 23(3), 649–663, doi: 10.1175/2009jcli2968.1.

    Article  Google Scholar 

  55. Zhang, Y. S., T. Ohata, D. Q. Yang, and G. Davaa, 2004: Bias correction of daily precipitation measurements for Mongolia. Hydrological Processes, 18(16), 2991–3005, doi: 10.1002/hyp.5745.

    Article  Google Scholar 

  56. Zhou, L., R. K. Kaufmann, Y. Tian, R. B. Myneni, and C. J. Tucker 2003: Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. J. Geophys. Res., 108(D1), ACL 3-1–ACL 3-16, doi: 10.1029/2002jd002510.

    Article  Google Scholar 

  57. Zhu, C. W., J. H. He, and G. X. Wu, 2000: East Asian monsoon index and its interannual relationship with largescale thermal dynamic circulation. Acta Meteorologica Sinica, 58, 391–402. (in Chinese)

    Google Scholar 

  58. Zhu, L. K., and J. J. Meng, 2010: Spatiotemporal variation of precipitation in the central Inner Mongolia in recent 43 years. Arid Zone Research, 27(4), 536–544. (in Chinese)

    Google Scholar 

  59. Zhu, Y. L., H. J. Wang, W. Zhou, and J. H. Ma, 2011: Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dyn., 36(7–8), 1463–1473, doi: 10.1007/s00382-010-0852-9.

    Article  Google Scholar 

  60. Zhu, Y. L., T. Wang, and H. J. Wang, 2016: Relative contribution of the anthropogenic forcing and natural variability to the interdecadal shift of climate during the late 1970s and 1990s. Science Bulletin, 61(5), 416–424, doi: 10.1007/s11434-016-1012-3.

    Article  Google Scholar 

  61. Zou, X. K., P. M. Zhai, and Q. Zhang, 2005: Variations in droughts over China: 1951–2003. Geophys. Res. Lett., 32(4), doi: 10.1029/2004GL021853.

    Google Scholar 

  62. Zuo, Z. Y., R. H. Zhang, and P. Zhao, 2011: The relation of vegetation over the Tibetan Plateau to rainfall in China during the boreal summer. Climate Dyn., 36(5–6), 1207–1219, doi: 10.1007/s00382-010-0863-6.

    Article  Google Scholar 

  63. Zuo, J. Q., W. J. Li, C. H. Sun, L. Xu, and H.-L. Ren, 2013a: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30(4), 1173–1186, doi: 10.1007/s00376-012-2125-5.

    Article  Google Scholar 

  64. Zuo, Z. Y., S. Yang, R. H. Zhang, P. P. Jiang, L. Zhang, and F. Wang, 2013b: Long-term variations of broad-scale Asian summer monsoon circulation and possible causes. J. Climate, 26(22), 8947–8961, doi: 10.1175/jcli-d-12-00691.1.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers for their constructive suggestions and comments, which helped to improve the paper. This research was supported jointly by the National Key Research and Development Program (Grant No. 2016YFA0600604), the National Natural Science Foundation of China (Grant No. 41461144001 and 41375046), Open Research Fund Program of Key Laboratory of Meteorological Disaster of Ministry of Education (Nanjing University of Information Science and Technology) Grant No. KLME1403, and the Chinese Academy of Sciences President’s International Fellowship Initiative. In this study, the NCEP data are provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, and available online at https://www.esrl.noaa.gov/psd/; the SST data are derived from the Met Office Hadley Centre (http://www.metoffice.gov.uk/hadobs/hadisst/data/download.html).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wen Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piao, J., Chen, W., Wei, K. et al. An abrupt rainfall decrease over the Asian inland plateau region around 1999 and the possible underlying mechanism. Adv. Atmos. Sci. 34, 456–468 (2017). https://doi.org/10.1007/s00376-016-6136-5

Download citation

Key words

  • Asian inland plateau
  • summer rainfall
  • drought
  • teleconnection pattern
  • North Atlantic