Advances in Atmospheric Sciences

, Volume 34, Issue 4, pp 456–468 | Cite as

An abrupt rainfall decrease over the Asian inland plateau region around 1999 and the possible underlying mechanism

  • Jinling Piao
  • Wen ChenEmail author
  • Ke Wei
  • Yong Liu
  • Hans-F. Graf
  • Joong-Bae Ahn
  • Alexander Pogoreltsev
Original Paper


A decadal change in summer rainfall in the Asian inland plateau (AIP) region is identified around 1999. This decadal change is characterized by an abrupt decrease in summer rainfall of about 15.7% of the climatological average amount, leading to prolonged drought in the Asian inland plateau region. Both the surface air temperature and potential evapotranspiration in the AIP show a significant increase, while the soil moisture exhibits a decrease, after the late 1990s. Furthermore, the normalized difference vegetation index shows an apparent decreasing trend during 1999–2007. Three different drought indices—the standardized precipitation index, the standardized precipitation evapotranspiration index, and the self-calibrating Palmer drought severity index—present pronounced climate anomalies during 1999–2007, indicating dramatic drought exacerbation in the region after the late 1990s. This decadal change in the summer rainfall may be attributable to a wave-like teleconnection pattern from Western Europe to Asia. A set of model sensitivity experiments suggests that the summer warming sea surface temperature in the North Atlantic could induce this teleconnection pattern over Eurasia, resulting in recent drought in the AIP region.

Key words

Asian inland plateau summer rainfall drought teleconnection pattern North Atlantic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the two anonymous reviewers for their constructive suggestions and comments, which helped to improve the paper. This research was supported jointly by the National Key Research and Development Program (Grant No. 2016YFA0600604), the National Natural Science Foundation of China (Grant No. 41461144001 and 41375046), Open Research Fund Program of Key Laboratory of Meteorological Disaster of Ministry of Education (Nanjing University of Information Science and Technology) Grant No. KLME1403, and the Chinese Academy of Sciences President’s International Fellowship Initiative. In this study, the NCEP data are provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, and available online at; the SST data are derived from the Met Office Hadley Centre (


  1. Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2-LM2 Evaluation with prescribed SST simulations. J. Climate, 17(24), 4641–4673.CrossRefGoogle Scholar
  2. Bai, Y. F., J. G. Wu, Q. Xing, Q. M. Pan, J. H. Huang, D. L. Yang, and X. G. Han, 2008: Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 89(8), 2140–2153, doi: 10.1890/07-0992.1.CrossRefGoogle Scholar
  3. Bao, G., Y. Liu, N. Liu, and H. W. Linderholm, 2015: Drought variability in eastern Mongolian Plateau and its linkages to the large-scale climate forcing. Climate Dyn., 44(3–4), 717–733, doi: 10.1007/s00382-014-2273-7.CrossRefGoogle Scholar
  4. Chen, G. S., and R. H. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in Northwest China. J. Climate, 25(22), 7834–7851, doi: 10.1175/jcli-d-11-00684.1.CrossRefGoogle Scholar
  5. Chen, H. P., and J. Q. Sun, 2015: Changes in drought characteristics over China using the standardized precipitation evapotranspiration index. J. Climate, 28(13), 5430–5447, doi: 10.1175/jcli-d-14-00707.1.CrossRefGoogle Scholar
  6. Chen, M. Y., P. P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3(3), 249–266, doi: 10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.CrossRefGoogle Scholar
  7. Chen, W., M. Takahashi, and H.–F. Graf, 2003: Interannual variations of stationary planetary wave activity in the northern winter troposphere and stratosphere and their relations to NAM and SST. J. Geophys. Res., 108(D24), 4797, doi: 10.1029/2003JD003834.Google Scholar
  8. Chen, W., D. Q. Zhu, H. Z. Liu, and S. F. Sun, 2009: Land-air interaction over arid/semi-arid areas in China and its impact on the East Asian summer monsoon. I: Calibration of the Land Surface Model (BATS) using multicriteria methods. Adv. Atmos. Sci., 26(6), 1088–1098, doi: 10.1007/s00376-009-8187-3.CrossRefGoogle Scholar
  9. Chen, X. Y., and K.-K. Tung, 2014: Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345(6199), 897–903, doi: 10.1126/science.1254937.CrossRefGoogle Scholar
  10. Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. I: Formulation and simulation characteristics. J. Climate, 19(5), 643–674, doi: 10.1175/JCLI 3629.1.CrossRefGoogle Scholar
  11. Drijfhout, S. S., A. T. Blaker, S. A. Josey, A. J. G. Nurser, B. Sinha, and M. A. Balmaseda, 2014: Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett., 41(22), 7868–7874, doi: 10.1002/2014 gl061456.CrossRefGoogle Scholar
  12. Endo, N., T. Kadota, J. Matsumoto, B. Ailikun, and T. Yasunari, 2006: Climatology and trends in summer precipitation characteristics in Mongolia for the period 1960–98. J. Meteor. Soc. Japan, 84(3), 543–551, doi: 10.2151/jmsj.84.543.CrossRefGoogle Scholar
  13. Gu, W., C. Y. Li, X. Wang, W. Zhou, and W. J. Li, 2009: Linkage between mei-yu precipitation and North Atlantic SST on the decadal timescale. Adv. Atmos. Sci., 26(1), 101–108, doi: 10.1007/s00376-009-0101-5. doi: 10.1007/s00376-009-0101-5CrossRefGoogle Scholar
  14. Huang, J., S. L. Sun, Y. Xue, and J. C. Zhang, 2015: Changing characteristics of precipitation during 1960–2012 in Inner Mongolia, northern China. Meteor. Atmos. Phys., 127(3), 257–271, doi: 10.1007/s00703-014-0363-z.CrossRefGoogle Scholar
  15. Huang, J. P., H. P. Yu, X. D. Guan, G. Y. Wang, and R. X. Guo, 2016: Accelerated dryland expansion under climate change. Nature Climate Change, 6(2), 166–171, doi: 10.1038/nclimate2837.Google Scholar
  16. Huang, R. H., Y. Liu, and T. Feng, 2013: Interdecadal change of summer precipitation over Eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes. Chinese Science Bulletin, 58(12), 1339–1349, doi: 10.1007/s11434-012-5545-9.CrossRefGoogle Scholar
  17. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77(3), 437–471, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  18. Lepage, Y., 1971: A combination of Wilcoxon’s and Ansari-Bradley’s statistics. Biometrika, 58(1), 213–217, doi: 10.1093/biomet/58.1.213.CrossRefGoogle Scholar
  19. Li, S. L., 2004: Impact of northwest Atlantic SST anomalies on the circulation over the Ural Mountains during early winter. J. Meteor. Soc. Japan, 82(4), 971–988, doi: 10.2151/jmsj.2004.971.CrossRefGoogle Scholar
  20. Lin, S.-J., 2004: A “Vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132(10), 2293–2307, doi: 10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.CrossRefGoogle Scholar
  21. Liu, Y., G. Huang, and R. H. Huang, 2011: Inter-decadal variability of summer rainfall in Eastern China detected by the Lepage test. Theor. Appl. Climatol., 106(3–4), 481–488, doi: 10.1007/s00704-011-0442-8.CrossRefGoogle Scholar
  22. Liu, Y. Y., L. Wang, W. Zhou, and W. Chen, 2014: Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Climate Dyn., 42(11–12), 2817–2839, doi: 10.1007/s00382-014-2163-z.CrossRefGoogle Scholar
  23. Ma, Z. G., and C. B. Fu, 2006: Some evidence of drying trend over northern China from 1951 to 2004. Chinese Science Bulletin, 51(23), 2913–2925, doi: 10.1007/s11434-006-2159-0.CrossRefGoogle Scholar
  24. McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Preprints, 8th Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.Google Scholar
  25. Milly, P. C. D., and A. B. Shmakin, 2002: Global modeling of land water and energy balances. I: The land dynamics (LaD) model. Journal of Hydrometeorology, 3(3), 283–299, doi: 10.1175/1525-7541(2002)003<0283:GMOLWA>2.0.CO;2.CrossRefGoogle Scholar
  26. Mu, S. J., H. F. Yang, J. L. Li, Y. Z. Chen, C. C. Gang, W. Zhou, and W. M. Ju, 2013: Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia, China. Journal of Geographical Sciences, 23(2), 231–246, doi: 10.1007/s11442-013-1006-x.CrossRefGoogle Scholar
  27. Myneni, R. B., F. G. Hall, P. J. Sellers, and A. L. Marshak, 1995: The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens., 33(2), 481–486, doi: 10.1109/36.377948.CrossRefGoogle Scholar
  28. Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running, 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625), 1560–1563, doi: 10.1126/science.1082750.CrossRefGoogle Scholar
  29. Palmer, W. C., 1965: Meteorological drought. Research Paper No 45, US Dept of Commerce, 58.Google Scholar
  30. Peng, S. S., and Coauthors, 2013: Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: A modeling analysis. Agricultural and Forest Meteorology, 178–179, 46–55, doi: 10.1016/j.agrformet.2013.02.002.CrossRefGoogle Scholar
  31. Pettorelli, N., J. O. Vik, A. Mysterud, J. M. Gaillard, C. J. Tucker, and N. C. Stenseth, 2005: Using the satellitederived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution, 20(9), 503–510, doi: 10.1016/j.tree. 2005.05.011.CrossRefGoogle Scholar
  32. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), doi: 10.1029/2002JD002670.Google Scholar
  33. Roerink, G. J., M. Menenti, W. Soepboer, and Z. Su, 2003: Assessment of climate impact on vegetation dynamics by using remote sensing. Physics and Chemistry of the Earth, Parts A/B/C, 28(1–3), 103–109, doi: 10.1016/s1474-7065(03) 00011-1.CrossRefGoogle Scholar
  34. Running, S. W., 1990: Estimating terrestrial primary productivity by combining remote sensing and ecosystem simulation. Remote Sensing of Biosphere Functioning, R. J. Hobbs and H. A. Mooney, Eds., Springer-Verlag, 65–86, doi: 10.1007/978-1-4612-3302-24.CrossRefGoogle Scholar
  35. Sato, T., F. Kimura, and A. Kitoh, 2007: Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol., 333(1), 144–154, doi: 10.1016/j.jhydrol.2006.07.023.CrossRefGoogle Scholar
  36. Takaya, K., and H. Nakamura, 2001: A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58(6), 608–627, doi: 10.1175/1520-0469(2001)058 <0608:AFOAPI>2.0.CO;2.CrossRefGoogle Scholar
  37. Tao, S. L., and Coauthors, 2015: Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA, 112(7), 2281–2286, doi: 10.1073/pnas.1411748112.CrossRefGoogle Scholar
  38. Trenberth, K. E., J. T. Fasullo, G. Branstator, and A. S. Phillips, 2014: Seasonal aspects of the recent pause in surface warming. Nature Climate Change, 4(10), 911–916, doi: 10.1038/NCLIMATE2341.CrossRefGoogle Scholar
  39. Ueda, H., Y. Kamae, M. Hayasaki, A. Kitoh, S. Watanabe, Y. Miki, and A. Kumai, 2015: Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon. Nature Commun., 6, 8854, doi: 10.1038/ncomms9854.CrossRefGoogle Scholar
  40. Van der Schirier, Barichivich, Briffa and Jones, 2013: A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res., 118(10), 4025–4048, doi: 10.1002/jgrd.50355.Google Scholar
  41. Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23(7), 1696–1718, doi: 10.1175/2009jcli2909.1.CrossRefGoogle Scholar
  42. Wang, B., and Z. Fan, 1999: Choice of south Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638.CrossRefGoogle Scholar
  43. Wang, L., and W. Chen, 2014: A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. International Journal of Climatology, 34(6), 2059–2078, doi: 10.1002/joc.3822.CrossRefGoogle Scholar
  44. Wang, L., W. Chen, and W. Zhou, 2014: Assessment of future drought in Southwest China based on CMIP5 multimodel projections. Adv. Atmos. Sci., 31(5), 1035–1050, doi: 10.1007/s00376-014-3223-3.CrossRefGoogle Scholar
  45. Wang, Z. W., P. M. Zhai, and H. T. Zhang, 2003: Variation of drought over northern China during 1950–2000. Journal of Geographical Sciences, 13(4), 480–487, doi: 10.1007/BF 02837887.CrossRefGoogle Scholar
  46. Wei, K., and L. Wang, 2013: Reexamination of the aridity conditions in arid Northwestern China for the last decade. J. Climate, 26(23), 9594–9602, doi: 10.1175/jcli-d-12-00605.1.CrossRefGoogle Scholar
  47. Wells, N., S. Goddard, and M. J. Hayes, 2004: A self-calibrating Palmer drought serivity index. J. Climate, 17, 2335–2351, doi: 10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2.CrossRefGoogle Scholar
  48. Wu, R. G., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. T. Gao, 2010: Changes in the relationship between Northeast China summer temperature and ENSO. J. Geophys. Res., 115(D21), doi: 10.1029/2010jd014422.Google Scholar
  49. Wu, R. G., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. T. Gao, 2011: Northeast China summer temperature and North Atlantic SST. J. Geophys. Res., 116(D16), doi: 10.1029/2011jd 015779.Google Scholar
  50. Xu, Z. Q., K. Fan, and H. J. Wang, 2015: Decadal variation of summer precipitation over China and associated atmospheric circulation after the late 1990s. J. Climate, 28(10), 4086–4106, doi: 10.1175/jcli-d-14-00464.1.CrossRefGoogle Scholar
  51. Xue, X., W. Chen, D. Nath, and D. W. Zhou, 2015: Whether the decadal shift of South Asia High intensity around the late 1970s exists or not? Theor. Appl. Climatol., 120, 673–683, doi: 10.1007/s00704-014-1200-5.CrossRefGoogle Scholar
  52. Yamanaka, T., M. Tsujimura, D. Oyunbaatar, and G. Davaa, 2007: Isotopic variation of precipitation over eastern Mongolia and its implication for the atmospheric water cycle. J. Hydrol., 333(1), 21–34, doi: 10.1016/j.jhydrol.2006.07.022.CrossRefGoogle Scholar
  53. Yonetani, T., and G. J. McCabe, Jr., 1994: Abrupt changes in regional temperature in the conterminous United States, 1895–1989. Climate Research, 4, 13–23, doi: 10.3354/cr004013.CrossRefGoogle Scholar
  54. Zhai, J. Q., B. D. Su, V. Krysanova, T. Vetter, C. Gao, and T. Jiang, 2010: Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J. Climate, 23(3), 649–663, doi: 10.1175/2009jcli2968.1.CrossRefGoogle Scholar
  55. Zhang, Y. S., T. Ohata, D. Q. Yang, and G. Davaa, 2004: Bias correction of daily precipitation measurements for Mongolia. Hydrological Processes, 18(16), 2991–3005, doi: 10.1002/hyp.5745.CrossRefGoogle Scholar
  56. Zhou, L., R. K. Kaufmann, Y. Tian, R. B. Myneni, and C. J. Tucker 2003: Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. J. Geophys. Res., 108(D1), ACL 3-1–ACL 3-16, doi: 10.1029/2002jd002510.CrossRefGoogle Scholar
  57. Zhu, C. W., J. H. He, and G. X. Wu, 2000: East Asian monsoon index and its interannual relationship with largescale thermal dynamic circulation. Acta Meteorologica Sinica, 58, 391–402. (in Chinese)Google Scholar
  58. Zhu, L. K., and J. J. Meng, 2010: Spatiotemporal variation of precipitation in the central Inner Mongolia in recent 43 years. Arid Zone Research, 27(4), 536–544. (in Chinese)Google Scholar
  59. Zhu, Y. L., H. J. Wang, W. Zhou, and J. H. Ma, 2011: Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dyn., 36(7–8), 1463–1473, doi: 10.1007/s00382-010-0852-9.CrossRefGoogle Scholar
  60. Zhu, Y. L., T. Wang, and H. J. Wang, 2016: Relative contribution of the anthropogenic forcing and natural variability to the interdecadal shift of climate during the late 1970s and 1990s. Science Bulletin, 61(5), 416–424, doi: 10.1007/s11434-016-1012-3.CrossRefGoogle Scholar
  61. Zou, X. K., P. M. Zhai, and Q. Zhang, 2005: Variations in droughts over China: 1951–2003. Geophys. Res. Lett., 32(4), doi: 10.1029/2004GL021853.Google Scholar
  62. Zuo, Z. Y., R. H. Zhang, and P. Zhao, 2011: The relation of vegetation over the Tibetan Plateau to rainfall in China during the boreal summer. Climate Dyn., 36(5–6), 1207–1219, doi: 10.1007/s00382-010-0863-6.CrossRefGoogle Scholar
  63. Zuo, J. Q., W. J. Li, C. H. Sun, L. Xu, and H.-L. Ren, 2013a: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30(4), 1173–1186, doi: 10.1007/s00376-012-2125-5.CrossRefGoogle Scholar
  64. Zuo, Z. Y., S. Yang, R. H. Zhang, P. P. Jiang, L. Zhang, and F. Wang, 2013b: Long-term variations of broad-scale Asian summer monsoon circulation and possible causes. J. Climate, 26(22), 8947–8961, doi: 10.1175/jcli-d-12-00691.1.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jinling Piao
    • 1
    • 2
  • Wen Chen
    • 1
    • 2
    Email author
  • Ke Wei
    • 1
  • Yong Liu
    • 1
  • Hans-F. Graf
    • 1
  • Joong-Bae Ahn
    • 3
  • Alexander Pogoreltsev
    • 4
  1. 1.Center for Monsoon System Research, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Earth ScienceUniversity of the Chinese Academy of SciencesBeijingChina
  3. 3.Department of Atmospheric SciencesPusan National UniversityPusanKorea
  4. 4.Russian State Hydrometeorological UniversitySt. PetersburgRussia

Personalised recommendations