Askne, J., and H. Nordius, 1987: Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci., 22, 379–386, doi: 10.1029/RS022i003p00379.
Article
Google Scholar
Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97, 15 787–15 801, doi: 10.1029/92 JD01517.
Google Scholar
Bevis, M., S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware, 1994: GPS Meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteor., 33, 379–386.
Article
Google Scholar
Bock, O., and Coauthors, 2013: Accuracy assessment of water vapour measurements from in situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP. Atmospheric Measurement Techniques, 6, 2777–2802, doi: 10.5194/amt-6-2777-2013.
Article
Google Scholar
Boutiouta, S., and A. Lahcene, 2013: Preliminary study of GNSS meteorology techniques in Algeria. Int. J. Remote Sens., 34, 5105–5118.
Article
Google Scholar
Brenot, H., V. Ducrocq, A. Walpersdorf, C. Champollion, and O. Caumont, 2006: GPS zenith delay sensitivity evaluated from high-resolution numerical weather prediction simulations of the 8-9 September 2002 flash flood over southeastern France. J. Geophys. Res., 111, doi: 10.1029/2004JD005726.
Businger, S., Chiswell, S. R., Ulmer, W. C., and Johnson, R., 1996: Balloons as a Lagrangian measurement platform for atmospheric research. J. Geophys. Res, 101, doi: 10.1029/95JD 00559.
Davis, J. L., T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered, 1985: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci., 20, 1593–1607, doi: 10.1029/RS020i006p01593.
Article
Google Scholar
Dee, D. P., and Coauthors 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc., 137, 553–597. doi: 10.1002/ qj.828.
Article
Google Scholar
Duan J., and Coauthors, 1996: GPS meteorology: Direct estimation of the absolute value of precipitable water. J. Appl. Meteorol., 35, 830–838.
Article
Google Scholar
Elliott, W. P., 1995: On detecting long-term changes in atmospheric moisture. Climatic Change, 31, 349–367, doi: 10.1007/BF01095152.
Article
Google Scholar
Fernández, L. I., P. Salio, M. P. Natali, and A. M. Meza, 2010: Estimation of precipitable water vapour from GPS measurements in Argentina: Validation and qualitative analysis of results. Advances in Space Research, 46, 879–894, doi: 10.1016/j.asr. 2010.05.012.
Article
Google Scholar
Guerova, G., E. Brockmann, J. Quiby, F. Schubiger, and C. Matzler, 2003: Validation of NWP mesoscale models with Swiss GPS network AGNES. J. Appl. Meteor., 42, 141–150.
Article
Google Scholar
Guerova, G., and Coauthors, 2016: Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmospheric Measurement Techniques, 9, 5385–5406.
Article
Google Scholar
Kos, T., M. Botinčan, and A. Dlesk, 2009: Mitigating GNSS Positioning Errors due to Atmospheric Signal Delays. Pomorstvo, 23, 495–513.
Google Scholar
Mengistu Tsidu, G., T. Blumenstock, and F. Hase, 2015: Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis. Atmospheric Measurement Techniques, 8, 3277–3295, doi: 10.5194/amt-8-3277-2015.
Article
Google Scholar
Nash, J., T. Oakley, H. Vömel, and L. I. Wei, 2011: WMO intercomparison of high quality radiosonde systems, Yangjiang, China, 12 July–3 August 2010. IOM Rep. 107, WMO/TD 1580, World Meteorological Organization, 238 pp.
Google Scholar
Niell, A. E., 1996: Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res., 101, 3227–3246.
Article
Google Scholar
Rocken, C., T. Van Hove, and R. Ware, 1997: Near real-time GPS sensing of atmospheric water vapor. Geophys. Res. Lett., 24, 3221–3224.
Article
Google Scholar
Saastamoinen, J., 1972: Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The Use of Artificial Satellites for Geodesy, S. W. Henriksen, A. Mancini, and B. H. Chovitz, AGU, Washington, D.C., 247–251.
Google Scholar
Sapucci, L. F., 2014: Evaluation of modeling water-vaporweighted mean tropospheric temperature for GNSS-integrated water vapor estimates in Brazil. Journal of Applied Meteorology and Climatology, 53, 715–730, doi: 10.1175/JAMCD-13-048.1.
Article
Google Scholar
Teregoning, P., Boers, R. O’Brier, D., Hendy, M., 1998: Accuracy of absolute precipitable water vapor estimates from GPS observations. J. Geophys. Res.: Atmopsheres, 103, 28.
Google Scholar
Thayer, G. D., 1974: An improved equation for the radio refractive index of air. Radio Sci., 9, 803–807.
Article
Google Scholar
Torres, B., V. E. Cachorro, C. Toledano, J. P. Ortiz de Galisteo, A. Berjón, A. M. de Frutos, Y. Bennouna, and N. Laulainen, 2010: Precipitable water vapor characterization in the Gulf of Cadiz region (southwestern Spain) based on Sun photometer, GPS, and radiosonde data. J. Geophys. Res., 115, doi: 10.1029/2009JD012724.
Van Malderen, R., and Coauthors, 2014: A multi-site intercomparison of integrated water vapour observations for climate change analysis. Atmospheric Measurement Techniques, 7, 2487–2512, doi: 10.5194/amt-7-2487-2014.
Article
Google Scholar
Vey, S., R. Dietrich, M. Fritsche, A. Rülke, P. Steigenberger, and M. Rothacher, 2009: On the homogeneity and interpretation of precipitable water time series derived from global GPS observations. J. Geophys. Res., 114, doi: 10.1029/2008JD 010415.
Wang, J. H., and L. Y. Zhang, 2008: Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. J. Climate, 21, 2218–2238, doi: 10.1175/2007JCLI1944.1.
Article
Google Scholar
Ware, R. H., and Coauthors, 2000: Suominet: A real-time national GPS network for atmospheric research and education. Bull. Amer. Meteor. Soc., 81, 677–694.
Article
Google Scholar