Advances in Atmospheric Sciences

, Volume 34, Issue 5, pp 623–634 | Cite as

GPS water vapor and its comparison with radiosonde and ERA-Interim data in Algeria

  • Houaria Namaoui
  • Salem Kahlouche
  • Ahmed Hafid Belbachir
  • Roeland Van Malderen
  • Hugues Brenot
  • Eric Pottiaux
Original Paper


Remote sensing of atmospheric water vapor using global positioning system (GPS) data has become an effective tool in meteorology, weather forecasting and climate research. This paper presents the estimation of precipitable water (PW) from GPS observations and meteorological data in Algeria, over three stations located at Algiers, Bechar and Tamanrasset. The objective of this study is to analyze the sensitivity of the GPS PW estimates for the three sites to the weighted mean temperature (T m), obtained separately from two types of T mT s regression [one general, and one developed specifically for Algeria (T s stands for surface temperature)], and calculated directly from ERA-Interim data. The results show that the differences in T m are of the order of 18 K, producing differences of 2.01 mm in the final evaluation of PW. A good agreement is found between GPS-PW and PW calculated from radiosondes, with a small mean difference with Vaisala radiosondes. A comparison between GPS and ERA-Interim shows a large difference (4 mm) in the highlands region. This difference is possibly due to the topography. These first results are encouraging, in particular for meteorological applications in this region, with good hope to extend our dataset analysis to a more complete, nationwide coverage over Algeria.

Key words

GPS atmospheric water vapor radiosonde ERA-Interim 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the National Institute of Cartography and Remote Sensing and the Algerian Research Center for Astronomy, Astrophysics and Geophysics, for providing the GPS data. We are also grateful to Mr Larry OOLMAN from the University of Wyoming for making available the archive data of weather stations in Algeria.


  1. Askne, J., and H. Nordius, 1987: Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci., 22, 379–386, doi: 10.1029/RS022i003p00379.CrossRefGoogle Scholar
  2. Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97, 15 787–15 801, doi: 10.1029/92 JD01517.Google Scholar
  3. Bevis, M., S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware, 1994: GPS Meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteor., 33, 379–386.CrossRefGoogle Scholar
  4. Bock, O., and Coauthors, 2013: Accuracy assessment of water vapour measurements from in situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP. Atmospheric Measurement Techniques, 6, 2777–2802, doi: 10.5194/amt-6-2777-2013.CrossRefGoogle Scholar
  5. Boutiouta, S., and A. Lahcene, 2013: Preliminary study of GNSS meteorology techniques in Algeria. Int. J. Remote Sens., 34, 5105–5118.CrossRefGoogle Scholar
  6. Brenot, H., V. Ducrocq, A. Walpersdorf, C. Champollion, and O. Caumont, 2006: GPS zenith delay sensitivity evaluated from high-resolution numerical weather prediction simulations of the 8-9 September 2002 flash flood over southeastern France. J. Geophys. Res., 111, doi: 10.1029/2004JD005726.Google Scholar
  7. Businger, S., Chiswell, S. R., Ulmer, W. C., and Johnson, R., 1996: Balloons as a Lagrangian measurement platform for atmospheric research. J. Geophys. Res, 101, doi: 10.1029/95JD 00559.Google Scholar
  8. Davis, J. L., T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered, 1985: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci., 20, 1593–1607, doi: 10.1029/RS020i006p01593.CrossRefGoogle Scholar
  9. Dee, D. P., and Coauthors 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc., 137, 553–597. doi: 10.1002/ qj.828.CrossRefGoogle Scholar
  10. Duan J., and Coauthors, 1996: GPS meteorology: Direct estimation of the absolute value of precipitable water. J. Appl. Meteorol., 35, 830–838.CrossRefGoogle Scholar
  11. Elliott, W. P., 1995: On detecting long-term changes in atmospheric moisture. Climatic Change, 31, 349–367, doi: 10.1007/BF01095152.CrossRefGoogle Scholar
  12. Fernández, L. I., P. Salio, M. P. Natali, and A. M. Meza, 2010: Estimation of precipitable water vapour from GPS measurements in Argentina: Validation and qualitative analysis of results. Advances in Space Research, 46, 879–894, doi: 10.1016/j.asr. 2010.05.012.CrossRefGoogle Scholar
  13. Guerova, G., E. Brockmann, J. Quiby, F. Schubiger, and C. Matzler, 2003: Validation of NWP mesoscale models with Swiss GPS network AGNES. J. Appl. Meteor., 42, 141–150.CrossRefGoogle Scholar
  14. Guerova, G., and Coauthors, 2016: Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmospheric Measurement Techniques, 9, 5385–5406.CrossRefGoogle Scholar
  15. Kos, T., M. Botinčan, and A. Dlesk, 2009: Mitigating GNSS Positioning Errors due to Atmospheric Signal Delays. Pomorstvo, 23, 495–513.Google Scholar
  16. Mengistu Tsidu, G., T. Blumenstock, and F. Hase, 2015: Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis. Atmospheric Measurement Techniques, 8, 3277–3295, doi: 10.5194/amt-8-3277-2015.CrossRefGoogle Scholar
  17. Nash, J., T. Oakley, H. Vömel, and L. I. Wei, 2011: WMO intercomparison of high quality radiosonde systems, Yangjiang, China, 12 July–3 August 2010. IOM Rep. 107, WMO/TD 1580, World Meteorological Organization, 238 pp.Google Scholar
  18. Niell, A. E., 1996: Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res., 101, 3227–3246.CrossRefGoogle Scholar
  19. Rocken, C., T. Van Hove, and R. Ware, 1997: Near real-time GPS sensing of atmospheric water vapor. Geophys. Res. Lett., 24, 3221–3224.CrossRefGoogle Scholar
  20. Saastamoinen, J., 1972: Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The Use of Artificial Satellites for Geodesy, S. W. Henriksen, A. Mancini, and B. H. Chovitz, AGU, Washington, D.C., 247–251.Google Scholar
  21. Sapucci, L. F., 2014: Evaluation of modeling water-vaporweighted mean tropospheric temperature for GNSS-integrated water vapor estimates in Brazil. Journal of Applied Meteorology and Climatology, 53, 715–730, doi: 10.1175/JAMCD-13-048.1.CrossRefGoogle Scholar
  22. Teregoning, P., Boers, R. O’Brier, D., Hendy, M., 1998: Accuracy of absolute precipitable water vapor estimates from GPS observations. J. Geophys. Res.: Atmopsheres, 103, 28.Google Scholar
  23. Thayer, G. D., 1974: An improved equation for the radio refractive index of air. Radio Sci., 9, 803–807.CrossRefGoogle Scholar
  24. Torres, B., V. E. Cachorro, C. Toledano, J. P. Ortiz de Galisteo, A. Berjón, A. M. de Frutos, Y. Bennouna, and N. Laulainen, 2010: Precipitable water vapor characterization in the Gulf of Cadiz region (southwestern Spain) based on Sun photometer, GPS, and radiosonde data. J. Geophys. Res., 115, doi: 10.1029/2009JD012724.Google Scholar
  25. Van Malderen, R., and Coauthors, 2014: A multi-site intercomparison of integrated water vapour observations for climate change analysis. Atmospheric Measurement Techniques, 7, 2487–2512, doi: 10.5194/amt-7-2487-2014.CrossRefGoogle Scholar
  26. Vey, S., R. Dietrich, M. Fritsche, A. Rülke, P. Steigenberger, and M. Rothacher, 2009: On the homogeneity and interpretation of precipitable water time series derived from global GPS observations. J. Geophys. Res., 114, doi: 10.1029/2008JD 010415.Google Scholar
  27. Wang, J. H., and L. Y. Zhang, 2008: Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. J. Climate, 21, 2218–2238, doi: 10.1175/2007JCLI1944.1.CrossRefGoogle Scholar
  28. Ware, R. H., and Coauthors, 2000: Suominet: A real-time national GPS network for atmospheric research and education. Bull. Amer. Meteor. Soc., 81, 677–694.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Houaria Namaoui
    • 1
    • 2
  • Salem Kahlouche
    • 2
  • Ahmed Hafid Belbachir
    • 1
  • Roeland Van Malderen
    • 3
  • Hugues Brenot
    • 4
  • Eric Pottiaux
    • 5
  1. 1.Faculté de PhysiqueUniversité des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MBEl M’naouer, OranAlgérie
  2. 2.Département de Géodésie SpatialeCentre des Techniques SpatialesArzewAlgérie
  3. 3.Royal Meteorological Institute of BelgiumUccleBelgium
  4. 4.Royal Belgian Institute for Space AeronomyUccleBelgium
  5. 5.Royal Observatory of BelgiumUccleBelgium

Personalised recommendations