Abstract
Cloud detection is an essential preprocessing step for retrieving carbon dioxide from satellite observations of reflected sunlight. During the pre-launch study of the Chinese Carbon Dioxide Observation Satellite (TANSAT), a cloud-screening scheme was presented for the Cloud and Aerosol Polarization Imager (CAPI), which only performs measurements in five channels located in the visible to near-infrared regions of the spectrum. The scheme for CAPI, based on previous cloudscreening algorithms, defines a method to regroup individual threshold tests for each pixel in a scene according to the derived clear confidence level. This scheme is proven to be more effective for sensors with few channels. The work relies upon the radiance data from the Visible and Infrared Radiometer (VIRR) onboard the Chinese FengYun-3A Polar-orbiting Meteorological Satellite (FY-3A), which uses four wavebands similar to that of CAPI and can serve as a proxy for its measurements. The scheme has been applied to a number of the VIRR scenes over four target areas (desert, snow, ocean, forest) for all seasons. To assess the screening results, comparisons against the cloud-screening product from MODIS are made. The evaluation suggests that the proposed scheme inherits the advantages of schemes described in previous publications and shows improved cloud-screening results. A seasonal analysis reveals that this scheme provides better performance during warmer seasons, except for observations over oceans, where results are much better in colder seasons.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103, 32141–32158.
Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. C. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 1073–1086.
Arino, O., J. R. Perez, V. Kalogirou, P. Defourny, and F. Achard, 2010: GlobCover 2009. Proceedings of ESA Living Planet Symposium, 28 June–2 July, Bergen, Norway, 3 pp. [Available online at http://epic.awi.de/31046/1/Arino et al GlobCover 2009-a.pdf.]
Barkley, M. P., P. S. Monks, and R. J. Engelen, 2006: Comparison of SCIAMACHY and AIRS CO2 measurements over North America during the summer and autumn of 2003. Geophys. Res. Lett., 33, L20805.
Bi, Y. M., Z. D. Yang, S. Y. Gu, Q. Wang, L. Gao, and J. Chen, 2014: Impacts of aerosol and albedo on TanSat CO2 retrieval using the near infrared CO2 bands. Proc. SPIE 9259, Remote Sensing of the Atmosphere, Clouds, and Precipitation V, 925915 (November 8, 2014); doi: 10.1117/12.2066123.
Bovensmann, H., J. P. Burrows, M. Buchwitz, J. Frerick, S. Nöel, V. V. Rozanov, K. V. Chance, and A. P. H. Goede, 1999: SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci., 56, 127–150.
Butz, A., and Coauthors, 2011: Toward accurate CO2 and CH4 observations from GOSAT. Geophys. Res. Lett., 38, L14812, doi: 10.1029/2011GL047888.
Cai, Z. N., Y. Liu, and D. X. Yang, 2014: Analysis of XCO2 retrieval sensitivity using simulated Chinese Carbon Satellite (TanSat) measurements. Science China Earth Sciences, 57, 1919–1928.
Chahine, M., C. Barnet, E. T. Olsen, L. Chen, and E. Maddy, 2005: On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2. Geophys. Res. Lett., 32, L22803, doi: 10.1029/2005GL 024165.
Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911–926.
Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.
Crisp, D., C. E. Miller, and P. L. Decola, 2008: NASA Orbiting Carbon Observatory: Measuring the column averaged carbon dioxide mole fraction from space. Journal of Applied Remote Sensing, 2, 023508.
Dong, C. H., and Coauthors, 2009: An overview of a New Chinese weather satellite FY-3A. Bull. Amer. Meteor. Soc., 90, 1531–1544.
Farquhar, G. D., 1997: CLIMATE CHANGE: Carbon dioxide and vegetation. Science, 278, 1411.
Frey, R. A., S. A. Ackerman, Y. H. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Oceanic Technol., 25, 1057–1072.
Gao, B. C., A. F. H. Goetz, and W. J. Wiscombe, 1993: Cirrus cloud detection from Airborne Imaging Spectrometer data using the 1.38 µm water vapor band. Geophys. Res. Lett., 20, 301–304.
Gesell, G., 1989: An algorithm for snow and ice detection using AVHRR data: An extension to the APOLLO software package. Int. J. Remote Sens., 10, 897–905.
Hall, D. K., and G. A. Riggs, 2011: Normalized-difference snow index (NDSI). Encyclopedia of Snow, Ice and Glaciers, V. P. Singh, P. Singh, and U. K. Haritashya, Eds., Springer, 779–780.
Hall, D. K., G. A. Riggs, and V. V. Salomonson, 1995: Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 54, 127–140.
Hall, D. K., G. A. Riggs, V. V. Salomonson, N. E. DiGirolamo, and K. J. Bayr, 2002: MODIS snow-cover products. Remote Sensing of Environment, 83, 181–194.
He, Q.-J., 2011: A daytime cloud detection algorithm for FY-3A/VIRR data. Int. J. Remote Sens., 32, 6811–6822.
Hulley, G. C., and S. J. Hook, 2008: A new methodology for cloud detection and classification with ASTER data. Geophys. Res. Lett., 35, L16812.
Hutchison, K. D., B. D. Iisager, and B. Hauss, 2012: The use of global synthetic data for pre-launch tuning of the VIIRS cloud mask algorithm. Int. J. Remote Sens., 33, 1400–1423.
Hutchison, K. D., J. K. Roskovensky, J. M. Jackson, A. K. Heidinger, T. J. Kopp, M. J. Pavolonis, and R. Frey, 2005: Automated cloud detection and classification of data collected by the Visible Infrared Imager Radiometer Suite (VIIRS). Int. J. Remote Sens., 26, 4681–4706.
Ishida, H., and T. Y. Nakajima, 2009: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. J. Geophys. Res.: Atmos., 114, D07206, doi: 10.1029/2008JD010710.
Ishida, H., T. Y. Nakjima, T. Yokota, N. Kikuchi, and H. Watanabe, 2011: Investigation of GOSAT TANSO-CAI cloud screening ability through an intersatellite comparison. J. Appl. Meteor. Climatol., 50, 1571–1586.
Karlsson, K.-G., and A. Dybbroe, 2010: Evaluation of Arctic cloud products from the EUMETSAT Climate Monitoring Satellite Application Facility based on CALIPSO-CALIOP observations. Atmos. Chem. Phys., 10, 1789–1807.
Kriebel, K. T., R. W. Saunders, and G. Gesell, 1989: Optical properties of clouds derived from fully cloudy AVHRR pixels. Beitr. Phys. Atmos., 62, 165–171.
Kriebel, K. T., G. Gesell, M. Kästner, and H. Mannstein, 2003: The cloud analysis tool APOLLO: Improvements and validations. Int. J. Remote Sens., 24, 2389–2408.
Kuze, A., H. Suto, M. Nakajima, and T. Hamazaki, 2009: Thermal and near infrared sensor for carbon observation Fouriertransform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt., 48, 6716–6733.
Liu, Y., and Coauthors, 2013: Development of Chinese carbon dioxide satellite (TanSat). EGU General Assembly, Vienna, Austria, 157–189.
Le Quéré, C., and Coauthors, 2009: Trends in the sources and sinks of carbon dioxide. Nature Geo., 2, 831–836.
Nakajima, T. Y., T. Tsuchiya, H. Ishida, T. N. Matsui, and H. Shimoda, 2011: Cloud detection performance of spaceborne visible-to-infrared multispectral imagers. Appl. Opt., 50, 2601–2616.
Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459–473.
Reuter, M., M. Buchwitz, O. Schneising, J. Heymann, H. Bovensmann, and J. P. Burrows, 2010: A method for improved SCIAMACHY CO2 retrieval in the presence of optically thin clouds. Atmospheric Measurement Techniques, 3, 209–232.
Riggs, G. A., and D. K. Hall, 2004: Snow and cloud discrimination factors in the MODIS snow algorithm. Preprints, 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, 3714–3716.
Rossow, W. B., 1989: Measuring cloud properties from space: A review. J. Climate, 2, 201–213.
Rossow, W. B., and L. C. Garder, 1993: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Climate, 6, 2341–2369.
Rossow, W. B., L. C. Garder, and A. A. Lacis, 1989: Global, seasonal cloud variations from satellite radiance measurements. Part I: Sensitivity of analysis. J. Climate, 2, 419–458.
Saunders, R.W., and K. T. Kriebel, 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens., 9, 123–150.
Sèze, G., and W. B. Rossow, 1991: Time-cumulated visible and infrared radiance histograms used as descriptors of surface and cloud variations. Int. J. Remote Sens., 12, 877–920.
Shi, G. M., C. C. Li, and T. Ren, 2014: Sensitivity analysis of single-angle polarization reflectance observed by satellite. Chin. Sci. Bull., 59, 1519–1528.
Solomon, S., G.-K. Plattner, R. Knutti, and P. Friedlingstein, 2009: Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America, 106, 1704–1709.
Stowe, L. L., S. K. Vemury, and A. V. Rao, 1994: AVHRR clearsky radiation data sets at NOAA/NESDIS. Advances in Space Research, 14, 113–116.
Stowe, L. L., E. P. McClain, R. Carey, P. Pellegrino, G. G. Gutman, P. Davis, C. Long, and S. Hart, 1991: Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data. Advances in Space Research, 11, 51–54.
Taylor, T. E., and Coauthors, 2016: Orbiting Carbon Observatory- 2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data. Atmospheric Measurement Techniques, 9, 973–989.
Vogel, S. W., 2002: Usage of high-resolution Landsat 7 band 8 for single-band snow-cover classification. Annals of Glaciology, 34, 53–57.
Wang, X., W. Li, Y. Zhu, and B. Zhao, 2012: Improved cloud mask algorithm for FY-3A/VIRR data over the northwest region of China. Atmospheric Measurement Techniques, 5, 8189–8222.
Yokota, T., Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H.Watanabe, and S. Maksyutov, 2009: Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. Scientific Online Letters on the Atmosphere: SOLA, 5, 160–163.
Yoshida, Y., and Coauthors, 2013: Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmospheric Measurement Techniques, 6, 1533–1547.
Acknowledgments
This research was sponsored by the National Basic Research (973) Program of China from the Ministry of Science and Technology of China (Grant No. 2013CB430104) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05040201).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Wang, X., Guo, Z., Huang, Y. et al. A cloud detection scheme for the Chinese Carbon Dioxide Observation Satellite (TANSAT). Adv. Atmos. Sci. 34, 16–25 (2017). https://doi.org/10.1007/s00376-016-6033-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-016-6033-y