Skip to main content
Log in

Comparison between the response of the Northwest Pacific Ocean and the South China Sea to Typhoon Megi (2010)

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The upper-ocean responses to Typhoon Megi (2010) are investigated using data from ARGO floats and the satellite TMI. The experiments are conducted using a three-dimensional Princeton Ocean Model (POM) to assess the storm, which affected the Northwest Pacific Ocean (NWP) and the South China Sea (SCS). Results show that the upwelling and entrainment experiment together account for 93% of the SST anomalies, where typhoon-induced upwelling may cause strong ocean cooling. In addition, the anomalous SST cooling is stronger in the SCS than in the NWP. The most striking feature of the ocean response is the presence of a two-layer inertial wave in the SCS—a feature that is absent in the NWP. The near-inertial oscillations can be generated as typhoon wakes, which have maximum flow velocity in the surface mixed layer and may last for a few days, after the typhoon’s passage. Along the typhoon tracks, the horizontal currents in the upper ocean show a series of alternating negative and positive anomalies emanating from the typhoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antonov, J. A., R. A. Locarnini, T. P. Boyer, H. E. Garcia, and A. V. Mishonov, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, Levitus, S, Ed., U.S. Government Printing Office, Washington, D.C., 182 pp.

    Google Scholar 

  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917–946, doi: 10.1175/1520-0493(2000)128<0917: RCSOHO>2.0.CO;2.

    Article  Google Scholar 

  • Chang, S.W., and R. A. Anthes, 1979: The mutual response of the tropical cyclone and the ocean. J. Phys. Oceanogr., 9, 128–135, doi: 10.1175/1520-0485(1979)009<0128:TMROTT>2.0.CO;2.

    Article  Google Scholar 

  • Chen, X. Y., D. L. Pan, X. Q. He, Y. Bai, and D. F. Wang, 2012: Upper ocean responses to category 5 typhoon Megi in the western north Pacific. Acta Oceanologica Sinica, 31(1), 51–58.

    Article  Google Scholar 

  • Chiang, T.-L., C.-R. Wu, and L.-Y. Oey, 2011: Typhoon Kai-Tak: An ocean’s perfect storm. J. Phys. Oceanogr., 41, 221–233.

    Article  Google Scholar 

  • Choi, Y., K.-S. Yun, K.-J. Ha, K.-Y. Kim, S.-J. Yoon, and J. C. L. Chan, 2013: Effects of asymmetric SST distribution on straight-moving typhoon Ewiniar (2006) and recurving typhoon Maemi (2003). Mon. Wea. Rev., 141, 3950–3967, doi: 10.1175/MWR-D-12-00207.1.

    Article  Google Scholar 

  • Chu, P. C., J. M. Veneziano, C. W. Fan, M. J. Carron, and W. T. Liu, 2000: Response of the south China sea to tropical cyclone Ernie 1996. J. Geophys. Res., 105(C6), 13991–14009.

    Article  Google Scholar 

  • Da Silva, A., A. C. Young, and S. Levitus, 1994: Atlas of Surface Marine Data 1994. NOAA Atlas NESDIS 9, U.S. Department of Commerce, NOAA, NESDIS, 308 pp.

    Google Scholar 

  • Elsberry, R. L., T. Fraim, and R. N. Trapnell, 1976: A mixed layer model of the oceanic thermal response to hurricanes. J. Geophys. Res., 81, 1153–1162.

    Article  Google Scholar 

  • Elsner, J. B., S. E. Strazzo, T. H. Jagger, T. LaRow, and M. Zhao, 2013: Sensitivity of limiting hurricane intensity to SST in the Atlantic from observations and GCMs. J. Climate, 26, 5949–5957, doi: 10.1175/JCLI-D-12-00433.1

    Article  Google Scholar 

  • Fisher, E. L., 1958: Hurricanes and the sea-surface temperature field. J. Meteor., 15, 328–333.

    Article  Google Scholar 

  • Garrett, C., 2001: What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum. J. Phys. Oceanogr., 31(4), 962–971.

    Article  Google Scholar 

  • Geisler, J. E., 1970: Linear theory of the response of a two layer ocean to a moving hurricane. Geophys. Fluid Dyn., 1, 249–272.

    Article  Google Scholar 

  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 1129–1151.

    Article  Google Scholar 

  • Gjevik, B., 1991: Simulations of shelf sea response due to travelling storms. Cont. Shelf Res., 11(2), 136–166.

    Article  Google Scholar 

  • Gjevik, B., and M. A. Merrifield, 1993: Shelf-sea response to tropical storms along the west coast of Mexico. Cont. Shelf Res., 13(1), 25–47.

    Article  Google Scholar 

  • Greatbatch, R. J., 1985: On the role played by upwelling of water in lowering sea surface temperatures during the passage of a storm. J. Geophys. Res., 20, 11751–11755.

    Article  Google Scholar 

  • Guan, S. D., W. Zhao, J. Huthnance, J. W. Tian, and J. H. Wang, 2014: Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea, J. Geophys. Res., 119, 3134–3157, doi: 10.1002/2013JC009661.

    Article  Google Scholar 

  • Halpern, D., 1974: Observations of the deepening of the wind-mixed layer in the northeast Pacific Ocean. J. Phys. Oceanogr., 4, 454–466.

    Article  Google Scholar 

  • Kalnay, E, and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–470.

    Article  Google Scholar 

  • Ko, D. S., S.-Y. Chao, C.-C. Wu, and I.-I. Lin, 2014: Impacts of typhoon Megi (2010) on the South China Sea. J. Geophys. Res., 119, 4474–4489, doi: 10.1002/2013JC009785.

    Article  Google Scholar 

  • Large, W. G., and G. B. Crawford, 1995: Observations and simulations of upper-ocean response to wind events during the Ocean Storms Experiment, J. Phys. Oceanogr., 25, 2831–2852.

    Article  Google Scholar 

  • Leiper, D. F., 1967: Observed ocean conditions and hurricane Hilda, 1964. J. Atmos. Sci., 24, 182–196.

    Article  Google Scholar 

  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Professional Paper No. 13, 191 pp.

    Google Scholar 

  • Lin, I.-I., 2012: Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J. Geophys. Res., 117, C03039, doi: 10.1029/2011JC007626.

    Google Scholar 

  • Lin, I.-I., and Coauthors, 2003a: New evidence for enhanced ocean primary production triggered by tropical cyclone, Geophys. Res. Lett., 30(13), 1718, doi: 10.1029/2003GL017141.

    Google Scholar 

  • Lin, I.-I., W. T. Liu, C.-C. Wu, J. C. H. Chiang, and C.-H. Sui, 2003b: Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett., 30, 1131, doi: 10.1029/2002GL015674.

    Article  Google Scholar 

  • Liu L., J. F. Fei, X. P. Cheng, and X. G. Huang, 2013: Effect of wind-current interaction on ocean response during Typhoon KAEMI (2006). Science China Earth Sciences, 56(3), 418–433.

    Article  Google Scholar 

  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, L. Levitus, Ed., U.S. Government Printing Office, Washington, D.C., 182 pp.

  • Mei, W., and C. Pasquero, 2013: Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Climate, 26, 3745–3765, doi: 10.1175/JCLI-D-12-00125.1.

    Article  Google Scholar 

  • Mei, W., M. Lie, I.-I. Lin, and S.-P. Xie, 2015b: Tropical cycloneinduced ocean response: A comparative study of the South China Sea and tropical Northwest Pacific. J. Climate, 28(15), 5952–5968, doi: 10.1175/JCLI-D-14-00651.1.

    Article  Google Scholar 

  • Mei, W., S.-P. Xie, M. Zhao, and Y. Q. Wang, 2015a: Forced and internal variability of tropical cyclone track density in the western North Pacific. J. Climate, 28, 143–167, doi: 10.1175/JCLI-D-14-00164.1.

    Article  Google Scholar 

  • Miller, B. J., 1964: A study of the filling of Hurricane Donna (1960) over land. Mon. Wea. Rev., 92, 389–406.

    Article  Google Scholar 

  • Millot, C., and M. Crépon, 1981: Inertial oscillations on the continental shelf of the gulf of lions-observations and theory. J. Phys. Oceanogr., 11, 639–657, doi: 10.1175/1520-0485 (1981)011<0639:IOOTCS>2.0.CO;2.

    Article  Google Scholar 

  • Morey, S. L., M. A. Bourassa, D. S. Dukhovskoy, and J. J. O’Brien, 2006: Modeling studies of the upper ocean response to a tropical cyclone. Ocean Dynamics, 56, 594–606, doi: 10.1007/s10236-006-0085-y.

    Article  Google Scholar 

  • O’Brien, J. J., 1967: The non-linear response of a two-layer, baroclinic ocean to a stationary, axially-symmetric hurricane: Part II. Upwelling and mixing induced by momentum transfer. J. Atmos. Sci., 24, 208–215.

    Google Scholar 

  • O’Brien, J. J., and R. O. Reid, 1967: The non-linear response of a two-layer, baroclinic ocean to a stationary, axially-symmetric hurricane: Part I. Upwelling induced by momentum transfer. J. Atmos. Sci., 24, 197–207.

    Google Scholar 

  • Oey, L.-Y., M. Inoue, R. Lai, X.-H. Lin, S. E. Welsh, and L. J. Rouse, 2008: Stalling of near-inertial waves in a cyclone, Geophys. Res. Lett., 35, L12604, doi: 10.1029/2008GL034273.

    Article  Google Scholar 

  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175.

    Article  Google Scholar 

  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233–260.

    Article  Google Scholar 

  • Sakaida, F., H. Kawamura, and Y. Toba, 1998: Sea surface cooling caused by typhoons in the Tohoku Area in August 1989. J. Geophys. Res., 103(C1), 1053–1065.

    Article  Google Scholar 

  • Shang, S. L., and Coauthors, 2008: Changes of temperature and bio-optical properties in the South China Sea in response to typhoon Lingling, 2001. Geophys. Res. Lett., 35, L10602, doi: 10.1029/2008GL033502.

    Article  Google Scholar 

  • Shay, L. K., and R. L. Elsberry, 1987: Near-inertial ocean current response to hurricane Frederic. J. Phys. Oceanogr., 17, 1249–1269.

    Article  Google Scholar 

  • Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20227–20248.

    Article  Google Scholar 

  • Slutz, R. J., S. J. Lubker, J. D. Hiscox, S. D. Woodruff, R. L. Jenne, D. H. Joseph, P. M. Steurer, and J. D. Elms, 1985: COADS (comprehensive ocean-atmosphere data set), Release 1. NOAA Environmental Research Laboratories, CIRES University of Colorado, 300 pp.

    Google Scholar 

  • Stramma, L., P. Cornillon, and J. F. Price, 1986: Satellite observations of sea surface cooling by hurricanes. J. Geophys. Res., 91(C4), 5031–5035.

    Article  Google Scholar 

  • Tsai, Y., C.-S. Chern, and J. Wang, 2012: Numerical study of typhoon-induced ocean thermal content variations on the northern shelf of the South China Sea. Cont. Shelf Res., 42, 64–77.

    Article  Google Scholar 

  • Tseng, Y.-H., S. Jan, D. E. Dietrich, I.-I. Lin, Y.-T. Chang, and T.-Y. Tang, 2010: Modeled oceanic response and sea surface cooling to typhoon Kai-Tak. Terrestrial, Atmospheric and Oceanic Sciences, 21, 85–98, doi: 10.3319/TAO.2009.06.08.02(IWNOP).

    Article  Google Scholar 

  • Wang, J. C., J. Zhang, and J. G. Yang, 2014: Numerical simulation and preliminary analysis on ocean waves during Typhoon Nesat in South China Sea and adjacent areas. Chinese Journal of Oceanology and Limnology, 2014, 32(3), 665–680.

    Article  Google Scholar 

  • Yablonsky, R. M., and I. Ginis, 2009: Limitation of onedimensional ocean models for coupled hurricane-ocean model forecasts. Mon. Wea. Rev., 137, 4410–4419, doi: 10.1175/2009MWR2863.1

    Article  Google Scholar 

  • Yang, Y.-J., L. Sun, A.-M. Duan, Y.-B. Li, Y.-F. Fu, Y.-F. Yan, Z.- Q. Wang, and T. Xian, 2012: Impacts of the binary typhoons on upper ocean environments in November 2007. Journal of Applied Remote Sensing, 6, 063583, doi: 10.1117/1.JRS.6.063583.

    Google Scholar 

  • Yun, K.-S., J. C. L. Chan, and K.-J. Ha, 2012: Effects of SST magnitude and gradient on typhoon tracks around East Asia: a case study for Typhoon Maemi (2003). Atmospheric Research, 109-110, 36–51.

    Article  Google Scholar 

  • Zedler, S. E., T. D. Dickey, S. C. Doney, J. F. Price, X. Yu, and G. L. Mellor, 2002: Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site: 13–23 August 1995. J. Geophys. Res., 107(C12), 25-1–25-29, doi: 10.1029/2001JC000969.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the two anonymous reviewers for their helpful comments. This work was supported by the National Key Basic Research and Development Plan (Grant No. 2015CB953900), the National Natural Science Foundation of China (Grant No. 41176005), the Public Science and Technology Research Funds Projects of the Ocean (Grant No. GYHY201105018), and the China R&D Special Fund for Public Welfare Industry (GYHY 201306016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Liang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZL., Wen, P. Comparison between the response of the Northwest Pacific Ocean and the South China Sea to Typhoon Megi (2010). Adv. Atmos. Sci. 34, 79–87 (2017). https://doi.org/10.1007/s00376-016-6027-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-6027-9

Keywords

Navigation