Advances in Atmospheric Sciences

, Volume 33, Issue 8, pp 996–1004 | Cite as

Distinctive precursory air–sea signals between regular and super El Niños

  • Lin Chen
  • Tim Li
  • Swadhin K. Behera
  • Takeshi Doi


Statistically different precursory air–sea signals between a super and a regular El Niño group are investigated, using observed SST and rainfall data, and oceanic and atmospheric reanalysis data. The El Niño events during 1958–2008 are first separated into two groups: a super El Niño group (S-group) and a regular El Niño group (R-group). Composite analysis shows that a significantly larger SST anomaly (SSTA) tendency appears in S-group than in R-group during the onset phase [April–May(0)], when the positive SSTA is very small. A mixed-layer heat budget analysis indicates that the tendency difference arises primarily from the difference in zonal advective feedback and the associated zonal current anomaly (u′). This is attributed to the difference in the thermocline depth anomaly (D′) over the off-equatorial western Pacific prior to the onset phase, as revealed by three ocean assimilation products. Such a difference in D′ is caused by the difference in the wind stress curl anomaly in situ, which is mainly regulated by the anomalous SST and precipitation over the Maritime Continent and equatorial Pacific.


super El Niño precursory air–sea signals thermocline depth anomaly ENSO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

376_2016_5250_MOESM1_ESM.pdf (4.5 mb)
Supplementary material, approximately 4698 KB.


  1. Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 1132–1161.CrossRefGoogle Scholar
  2. Carton, J. A., and B. S. Giese, 2008: A Reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017.CrossRefGoogle Scholar
  3. Chao, J. P., and R. H. Zhang, 1990: The air-sea interaction waves in the tropics and their instabilities. Acta Meteorologica Sinica, 48, 46–54. (in Chinese)Google Scholar
  4. Chen, D. K., and Coauthors, 2015a: Strong influence of westerly wind bursts on El Niño diversity. Nature Geosci., 8, 339–345.CrossRefGoogle Scholar
  5. Chen, L., T. Li, and Y. Q. Yu, 2015b: Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J. Climate, 28, 3250–3274.CrossRefGoogle Scholar
  6. Chen, L., Y. Q. Yu, and W.-P. Zheng, 2016: Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2, Climate Dyn., 1–18, doi: 10.1007/s00382-016-2988-8.Google Scholar
  7. Chen, M. Y., P. P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249–266.CrossRefGoogle Scholar
  8. Clarke, A. J., 2010: Analytical theory for the quasi-steady and lowfrequency equatorial ocean response to wind forcing: The “tilt” and “warm water volume” modes. J. Phys. Oceanogr., 40, 121–137.CrossRefGoogle Scholar
  9. Ding, R. Q., J. P. Li, and Y.-H. Tseng, 2015: The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dyn., 44, 2017–2034.CrossRefGoogle Scholar
  10. Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18, 5224–5238.CrossRefGoogle Scholar
  11. Fedorov, A. V., S. N. Hu, M. Lengaigne, and E. Guilyardi, 2015: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Climate Dyn., 44, 1381–1401.CrossRefGoogle Scholar
  12. Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J. Atmos. Sci., 64, 3281–3295.CrossRefGoogle Scholar
  13. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.CrossRefGoogle Scholar
  14. Hirst, A. C., 1988: Slow instabilities in tropical ocean basin-global atmosphere models. J. Atmos. Sci., 45, 830–852.CrossRefGoogle Scholar
  15. Hong, L. C., Lin Ho, and F. F. Jin, 2014: A southern hemisphere booster of super El Niño. Geophys. Res. Lett., 41, 2142–2149.CrossRefGoogle Scholar
  16. Hu, S.-N., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. U. S. A., 113, 2005–2010.CrossRefGoogle Scholar
  17. Hu, S.-N., A. V. Fedorov, M. Lengaigne, and E. Guilyardi, 2014: The impact of westerly wind bursts on the diversity and predictability of El Niño events: an ocean energetics perspective. Geophys. Res. Lett., 41, 4654–4663, doi: 10.1002/2014 GL059573.CrossRefGoogle Scholar
  18. Huang, B.-Y., Y. Xue, D. X. Zhang, A. Kumar, and M. J. McPhaden, 2010: The NCEP GODAS ocean analysis of the tropical pacific mixed layer heat budget on seasonal to interannual time scales. J. Climate, 23, 4901–4925.CrossRefGoogle Scholar
  19. Huang, R. H., and Y. F. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 21–32, doi: 10.1007/BF02656915.CrossRefGoogle Scholar
  20. Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. J. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808.CrossRefGoogle Scholar
  21. Jin, F. F., S. I. An, A. Timmermann, and J. X. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30(3), 1120, doi: 10.1029/2002GL016356.CrossRefGoogle Scholar
  22. Jin, F. F., L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemblemean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, doi: 10.1029/2006GL027372.Google Scholar
  23. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  24. Kessler, W. S., 2006: The circulation of the eastern tropical Pacific: A review. Progr. Oceanogr., 69, 181–217.CrossRefGoogle Scholar
  25. Kumar, A., and Z. Z. Hu, 2012: Uncertainty in the oceanatmosphere feedbacks associated with ENSO in the reanalysis products. Climate Dyn., 39, 575–588.CrossRefGoogle Scholar
  26. Kumar, A., and Z.-Z. Hu, 2014: Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Climate Dyn., 42, 1243–1258.CrossRefGoogle Scholar
  27. Latif, M., V. A. Semenov, and W. Park, 2015: Super El Niños in response to global warming in a climate model. Climatic Change, 132, 489–500.CrossRefGoogle Scholar
  28. Lengaigne, M., E. Guilyardi, J. P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601–620.CrossRefGoogle Scholar
  29. Levine, A. F., and F.-F. Jin, 2010: Noise-induced instability in the ENSO recharge oscillator. J. Atmos. Sci., 67, 529–542.CrossRefGoogle Scholar
  30. Li, C. Y., 1990: Interaction between anomalous winter monsoon in East Asia and El Niño events. Adv. Atmos. Sci., 7, 36–46, doi: 10.1007/BF02919166CrossRefGoogle Scholar
  31. Li, J. Y., B. Q. Liu, J. D. Li, and J. Y. Mao, 2015: A comparative study on the dominant factors responsible for the weakerthan- expected El Niño event in 2014. Adv. Atmos. Sci., 32, 1381–1390, doi: 10.1007/s00376-015-4269-6.CrossRefGoogle Scholar
  32. Li, T., 1997: Phase transition of the El Niño-southern oscillation: A stationary SST mode. J. Atmos. Sci., 54, 2872–2887.CrossRefGoogle Scholar
  33. Li, T., Y. S. Zhang, E. Lu, and D. L. Wang, 2002: Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophys. Res. Lett., 29, 25-1–25-4.Google Scholar
  34. McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Niño. Science, 283, 950–954.CrossRefGoogle Scholar
  35. Menkes, C. E., M. Lengaigne, J. Vialard, M. Puy, P. Marchesiello, S. Cravatte, and G. Cambon, 2014: About the role of westerly wind events in the possible development of an El Niño in 2014. Geophys. Res. Lett., 41, 6476–6483.CrossRefGoogle Scholar
  36. Min, Q. Y., J. Z. Su, R. H. Zhang, and X. Y. Rong, 2015: What hindered the El Niño pattern in 2014? Geophys. Res. Lett., 42, 6762–6770, doi: 10.1002/2015GL064899.CrossRefGoogle Scholar
  37. Philander, S. G. H., T. Yamagata, and R. C. Pacanowski, 1984: Unstable air-sea interactions in the tropics. J. Atmos. Sci., 41, 604–613.CrossRefGoogle Scholar
  38. Ramesh, N., and R. Murtugudde, 2013: All flavours of El Niño have similar early subsurface origins. Nature Clim. Change, 3, 42–46.CrossRefGoogle Scholar
  39. Rong, X. Y., R. H. Zhang, T. Li, and J. Z. Su, 2011: Upscale feedback of high-frequency winds to ENSO. Quart. J. Roy. Meteor. Soc., 137, 894–907.CrossRefGoogle Scholar
  40. Russell, D. R., 2006: Development of a time-domain, variableperiod surface-wave magnitude measurement procedure for application at regional and teleseismic distances, Part I: Theory. Bull. Seismol. Soc. Am., 96, 665–677.CrossRefGoogle Scholar
  41. Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 3483–3517.CrossRefGoogle Scholar
  42. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.CrossRefGoogle Scholar
  43. Su, J. Z., R. H. Zhang, T. Li, X. Y. Rong, J. S. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605–617.CrossRefGoogle Scholar
  44. Su, J. Z., B. Q. Xiang, B. Wang, and T. Li, 2014: Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys. Res. Lett., 41, 9058–9064.CrossRefGoogle Scholar
  45. Takahashi, K., and B. Dewitte, 2016: Strong and moderate nonlinear El Niño regimes. Climate Dyn., 46, 1627–1645, doi: 10.1007/s00382-015-2665-3.CrossRefGoogle Scholar
  46. Timmermann, A., F.-F. Jin, and J. Abschagen, 2003: A nonlinear theory for El Niño bursting. J. Atmos. Sci., 60, 152–165.CrossRefGoogle Scholar
  47. Tollefson, J., 2014: El Niño tests forecasters. Nature, 508, 20–21.CrossRefGoogle Scholar
  48. Vecchi, G. A., and D. E. Harrison, 2006: The termination of the 1997-98 El Niño. Part I: Mechanisms of oceanic change. J. Climate, 19, 2633–2646.CrossRefGoogle Scholar
  49. Wang, B., and T. M. Li, 1993: A simple tropical atmosphere model of relevance to short-term climate variations. J. Atmos. Sci., 50, 260–284.CrossRefGoogle Scholar
  50. Wang, L., T. Li, and T. J. Zhou, 2012: Intraseasonal SST variability and air-sea interaction over the Kuroshio extension region during boreal summer. J. Climate, 25, 1619–1634.CrossRefGoogle Scholar
  51. Wyrtki, K., 1975: El Niño-the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572–584.CrossRefGoogle Scholar
  52. Wyrtki, K., 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res.: Oceans, 90, 7129–7132.CrossRefGoogle Scholar
  53. Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteor. Soc., 78, 2539–2558.CrossRefGoogle Scholar
  54. Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Technical Report OA-2008-01, 64 pp.Google Scholar
  55. Yu, Y., and D.-Z. Sun, 2009: Response of ENSO and the mean state of the tropical Pacific to extratropical cooling and warming: A study using the IAP coupled model. J. Climate, 22, 5902–5917.CrossRefGoogle Scholar
  56. Zebiak, S. E., and M. A. Cane, 1987: A model El Niño-southern oscillation. Mon. Wea. Rev., 115, 2262–2278.CrossRefGoogle Scholar
  57. Zhang, Y. C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi: 10.1029/2003 JD004457.CrossRefGoogle Scholar
  58. Zheng, F., L. H. Feng, and J. Zhu, 2015: An incursion of offequatorial subsurface cold water and its role in triggering the “double dip” La Niña event of 2011. Adv. Atmos. Sci., 32, 731–742, doi: 10.1007/s00376-014-4080-9.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lin Chen
    • 1
    • 2
  • Tim Li
    • 1
    • 2
  • Swadhin K. Behera
    • 3
  • Takeshi Doi
    • 3
  1. 1.Key Laboratory of Meteorological Disaster, Joint International Research Laboratory of Climate and Environmental Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina
  2. 2.International Pacific Research Center, School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonoluluUSA
  3. 3.Application LaboratoryJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan

Personalised recommendations