Advertisement

Advances in Atmospheric Sciences

, Volume 33, Issue 3, pp 269–282 | Cite as

The reliability of global and hemispheric surface temperature records

Open Access
Review

Abstract

The purpose of this review article is to discuss the development and associated estimation of uncertainties in the global and hemispheric surface temperature records. The review begins by detailing the groups that produce surface temperature datasets. After discussing the reasons for similarities and differences between the various products, the main issues that must be addressed when deriving accurate estimates, particularly for hemispheric and global averages, are then considered. These issues are discussed in the order of their importance for temperature records at these spatial scales: biases in SST data, particularly before the 1940s; the exposure of land-based thermometers before the development of louvred screens in the late 19th century; and urbanization effects in some regions in recent decades. The homogeneity of land-based records is also discussed; however, at these large scales it is relatively unimportant. The article concludes by illustrating hemispheric and global temperature records from the four groups that produce series in near-real time.

Key words

surface temperature data SST temperature homogeneity temperature biases urban 

References

  1. Arnfield, A. J., 2003: Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Inter. J. Climatol., 23, 1–26.CrossRefGoogle Scholar
  2. Böhm, R., P. D. Jones, J. Hiebl, D. Frank, M. Brunetti, and M. Maugeri, 2010: The early instrumental warm-bias: A solution for long Central Europe an temperature series 1760–2007. Climatic Change, 101, 41–67.CrossRefGoogle Scholar
  3. Bojinski, S., M. Verstraete, T. C. Peterson, C. Richter, A. Simmons, and M. Zemp, 2014: The concept of essential climate variables in support of climate research, applications, and policy. Bull. Amer. Meteor. Soc., 95, 1431–1443.CrossRefGoogle Scholar
  4. Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi: 10.1029/2005JD006548.CrossRefGoogle Scholar
  5. Brunet, M., and Coauthors, 2011: The minimization of the screen bias from ancient Western Mediterranean air temperature records: an exploratory statistical analysis. Inter. J. Climatol., 31, 1879–1895, doi: 10.1002/joc. 2192.CrossRefGoogle Scholar
  6. Callendar, G. S., 1938: The artificial production of carbon dioxide and its influence on temperature. Quart. J. Roy. Meteor. Soc., 64, 223–240, doi: 10.1002/qj.49706427503.CrossRefGoogle Scholar
  7. Callendar, G. S., 1961: Temperature fluctuations and trends over the earth. Quart. J. Roy. Meteor. Soc., 87, 1–12, doi: 10.1002/qj.49708737102.CrossRefGoogle Scholar
  8. Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28, doi: 10.1002/qj.776.CrossRefGoogle Scholar
  9. Compo, G. P., P. D. Sardesmukh, J. S. Whitaker, P. Brohan, P. D. Jones, and C. McColl, 2013: Independent confirmation of global land warming without the use of station. Geophys. Res. Lett., 40, 3170–3174, doi: 10.1002/grl.50425.CrossRefGoogle Scholar
  10. Conrad, V., and L. W. Pollak, 1962: Methods in Climatology. Harvard University Press, 459 pp.Google Scholar
  11. Cowtan, K., and R. G. Way, 2014: Coverage bias in the hadcrut4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 1935–1944, doi: 10.1002/qj.2297.CrossRefGoogle Scholar
  12. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/ qj.828.CrossRefGoogle Scholar
  13. Farmer, G., T. M. L. Wigley, P. D. Jones, and M. Salmon, 1989: Documenting and explaining recent global-mean temperature changes. Final Report to the Natural Environment Research Council, Contract No. GR3/6565, East Anglia University, Norwich, UK. [Available online at http://wwwcruueaac. uk/cru/pubs/pdf/Farmer-1989-NERCpdf.]Google Scholar
  14. Folland, C. K., 2005: Assessing bias corrections in historical sea surface temperature using a climate model. Inter. J. Climatol., 25, 895–911, doi: 10.1002/joc.1171.CrossRefGoogle Scholar
  15. Folland, C. K., and D. E. Parker, 1995: Correction of instrumental biases in historical sea surface temperature data. Quart. J. Roy. Meteor. Soc., 121, 319–367.CrossRefGoogle Scholar
  16. Foster, G., and S. Rahmstorf, 2011: Global temperature evolution 1979-2010. Environ. Res. Lett., 6, 044022, doi: 10.1088/1748-9326/6/4/044022.CrossRefGoogle Scholar
  17. Hansen, J., R. Ruedy, J. Glascoe, and M. Sato, 1999: GISS analysis of surface temperature change. J. Geophys. Res., 104, 30997–31022, doi: 10.1029/1999JD900835.CrossRefGoogle Scholar
  18. Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina- Elizade, 2006: Global temperature change. Proceedings of the National Academy of Sciences of the United States of America, 103, 14288–14293.CrossRefGoogle Scholar
  19. Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi: 10.1029/2010RG000345.CrossRefGoogle Scholar
  20. Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds. Cambridge University Press.Google Scholar
  21. Hawkins, E., and P. D. Jones, 2013: On increasing global temperatures: 75 years after Callendar. Quart. J. Roy. Meteor. Soc., 139, 1961–1963, doi: 10.1002/qj.2178.CrossRefGoogle Scholar
  22. Hersbach, H., C. Peubey, A. Simmons, P. Berrisford, P. Poli, and D. Dee, 2015: ERA-20CM: A twentieth-century atmospheric model ensemble. Quart. J. Roy. Meteor. Soc., 141, 2350–2375, doi: 10.1002/qj.2528.CrossRefGoogle Scholar
  23. Huang, B. Y., and Coauthors, 2015: Extended reconstructed Sea surface temperature Version 4 (ERSSTv4). Part I: upgrades and intercomparisons. J. Climate, 28, 911–930.CrossRefGoogle Scholar
  24. Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of Sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Inter. J. Climatol., 25, 865–879.CrossRefGoogle Scholar
  25. Jansen, E., and Coauthors, 2007: Palaeoclimate. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al., Eds. Cambridge University Press, 433–497.Google Scholar
  26. Jones, P. D., 1994: Hemispheric surface air temperature variations: a reanalysis and an update to 1993. J. Climate, 7, 1794–1802.CrossRefGoogle Scholar
  27. Jones, P. D., and D. H. Lister, 2009: The urban heat island in central London and urban-related warming trends in central London since 1900. Weather, 64, 323–327.CrossRefGoogle Scholar
  28. Jones, P. D., and D. H. Lister, 2015: Antarctic near-surface air temperatures compared with ERA-Interim values since 1979. International Journal of Climatology, 35, 1354–1366, doi: 10.1002/joc.4061.CrossRefGoogle Scholar
  29. Jones, P. D., and T. M. L. Wigley, 2010: Estimation of global temperature trends: What’s important and what isn’t. Climatic Change, 100, 59–69.CrossRefGoogle Scholar
  30. Jones, P. D., P. Y. Groisman, M. Coughlan, N. Plummer, W.-C. Wang, and T. R. Karl, 1990: Assessment of urbanization effects in time series of surface air temperature over land. Nature, 347, 169–172.CrossRefGoogle Scholar
  31. Jones, P. D., T. J. Osborn, and K. R. Briffa, 1997: Estimating sampling errors in large-scale temperature averages. J. Climate, 10, 2548–2568.CrossRefGoogle Scholar
  32. Jones, P. D., K. R. Briffa, and T. J. Osborn, 2003: Changes in the Northern hemisphere annual cycle: Implications for paleoclimatology? J. Geophys. Res., 108, 4588, doi: 10.1029/2003JD 003695.CrossRefGoogle Scholar
  33. Jones, P. D., D. H. Lister, and Q. Li, 2008: Urbanization effects in large-scale temperature records, with an emphasis on China. J. Geophys. Res., 113, D16122, doi: 10.1029/2008JD009916.CrossRefGoogle Scholar
  34. Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012: Hemispheric and large-scale landsurface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, doi: 10.1029/2011JD017139.Google Scholar
  35. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  36. Karl, T. R., C. N. Williams Jr., P. J. Young, and W. M. Wendland, 1986: A model to estimate the time of observation bias associated with monthly mean maximum, minimum and mean temperatures for the United States. J. Climate Appl. Meteor., 25, 145–160.CrossRefGoogle Scholar
  37. Karl, T. R., R. W. Knight, and J. R. Christy, 1994: Global and hemispheric temperature trends: Uncertainties related to inadequate spatial sampling. J. Climate, 7, 1144–1163.CrossRefGoogle Scholar
  38. Karl, T. R., and Coauthors, 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 1469–1472.CrossRefGoogle Scholar
  39. Kennedy, J. J., 2014: A review of uncertainty in in situ measurements and data sets of Sea surface temperature. Rev. Geophys., 52, 1–32, doi: 10.1002/2013RG000434.CrossRefGoogle Scholar
  40. Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011a: Reassessing biases and other uncertainties in Sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res., 116, doi: 10.1029/2010JD015218.Google Scholar
  41. Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011b: Reassessing biases and other uncertainties in Sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, doi: 10.1029/2010JD015220.Google Scholar
  42. Kent, E. C., J. J. Kennedy, D. I. Berry, and R. O. Smith, 2010: Ef fects of instrumentation changes on sea surface temperature measured in situ. Wiley Interdisciplinary Reviews: Climate Change, 1(5), 718–728, doi: 10.1002/wcc.55.Google Scholar
  43. Kent, E. C., N. A. Rayner, D. I. Berry, M. Saunby, B. I. Moat, J. J. Kennedy, and D. E. Parker, 2013: Global analysis of night marine air temperature and its uncertainty since 1880: The HadNMAT2 data set. J. Geophys. Res., 118, 1281–1298, doi: 10.1002/jgrd.50152.Google Scholar
  44. Köppen, W., 1873: Über mehrjährige perioden der witterung, insbesondere über die 11-jährige periode der temperatur. Zeitschrift der ö sterreichischen Gesellschaft für Meteorologie, Bd VIII, 241–248, 257–267.Google Scholar
  45. Le Treut, H., R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. Peterson, and M. Prather, 2007: Historical overview of climate change. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 93–127.Google Scholar
  46. Li, Q. X, J. Y. Huang, Z. H. Jiang, L. M. Zhou, P. Chu, and K. X. Hu, 2014: Detection of urbanization signals in extreme winter minimum temperature changes over Northern China. Climatic Change, 122, 595–608.CrossRefGoogle Scholar
  47. Liu, W., and Coauthors, 2015: Extended reconstructed Sea surface temperature Version 4 (ERSSTv4): Part II. Parametric and structural uncertainty estimations. J. Climate, 28, 931–951.CrossRefGoogle Scholar
  48. Lugina, K. M., P. Y. Groisman, K. Y. Vinnikov, V. V. Koknaeva, and N. A. Speranskaya, 2006: Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe, 1881–2005. Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Dept. Energy, Oak Ridge, Tenn., U.S.A. [Available online at http://cdiacesdornlgov/trends/temp/lugina/luginahtml.]Google Scholar
  49. Masson Delmotte, V. M., and Coauthors, 2013: Information from paleoclimate archives. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  50. Maury, M. F., 1855: Wind and Current Charts. 7th ed., US Navy, Philadelphia.Google Scholar
  51. Menne, M. J., C. N. Williams Jr., and R. S. Vose, 2009: The U.S historical climatology network monthly temperature data, Version 2. Bull. Amer. Meteor. Soc., 90, 993–1007.CrossRefGoogle Scholar
  52. Moberg, A., H. Alexandersson, H. Bergström, and P. D. Jones, 2003: Were southern Swedish summer temperatures before 1860 as warm as measured? Inter. J. Climatol., 23, 1495–1521.CrossRefGoogle Scholar
  53. Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi: 10.1029/2011JD017187.Google Scholar
  54. Nicholls, N., R. Tapp, K. Burrows, and D. Richards, 1996: Historical thermometer exposures in Australia. Inter. J. Climatol., 16, 705–710.CrossRefGoogle Scholar
  55. Parker, D. E., 1994: Effects of changing exposure of thermometers at land stations. Inter. J. Climatol., 14, 1–31.CrossRefGoogle Scholar
  56. Parker, D. E., 2004: Climate: large-scale warming is not urban. Nature, 432, 290 pp.CrossRefGoogle Scholar
  57. Parker, D. E., 2006: A demonstration that large-scale warming is not urban. J. Climate, 19, 2882–2895.CrossRefGoogle Scholar
  58. Parker, D. E., 2010: Urban heat island effects on estimates of observed climate change. Wiley Interdisciplinary Reviews: Climate Change, 1(1), 123–133, doi: 10.1002/wcc.21.Google Scholar
  59. Parker, D. E., 2011: Recent land surface air temperature trends assessed using the 20th century reanalysis. J. Geophys. Res., 116, D20125, doi: 10.1029/2011JD016438.CrossRefGoogle Scholar
  60. Parker, D. E., P. Jones, T. C. Peterson, and J. Kennedy, 2009: Comment on “Unresolved issues with the assessment of multidecadal global land surface temperature trends” by Roger A. Pielke Sr. et al. J. Geophys. Res., 114, D05104, doi: 10.1029/ 2008JD010450.Google Scholar
  61. Peterson, T. C., and T. W. Owen, 2005: Urban heat island assessment: metadata are important. J. Climate, 18, 2637–2646.CrossRefGoogle Scholar
  62. Poli, P., and Coauthors, 2013: The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C). ERA Report Series, 14 pp.Google Scholar
  63. Quayle, R. G., D. R. Easterling, T. R. Karl, and P. Y. Hughes, 1991: Effects of recent thermometer changes in the cooperative station network. Bull. Amer. Meteor. Soc., 72, 1718–1723.CrossRefGoogle Scholar
  64. Ren, G. Y., Y. Q. Zhou, Z. Y. Chu, J. X. Zhou, A. Y. Zhang, J. Guo, and X. F. Liu, 2008: Urbanization effects on observed surface air temperature trends in North China. J. Climate, 21, 1333–1348.CrossRefGoogle Scholar
  65. Rennie, J., and Coauthors, 2014: The international surface temperature initiative global land surface databank: Monthly temperature data release description and methods. Geoscience Data Journal, 1, 75–102, doi: 10.1002/gdj3.8.CrossRefGoogle Scholar
  66. Rohde, R., and Coauthors, 2013a: A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinfor Geostat: An Overview, 1, doi: 10.4172/2327-4581. 1000101.Google Scholar
  67. Rohde, R., and Coauthors, 2013b: Berkeley earth temperature averaging process. Geoinfor Geostat: An Overview, 1, doi: 10.4172/ gigs.1000103.Google Scholar
  68. Simmons, A. J., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, doi: 10.1029/2009JD012442.Google Scholar
  69. Smith, T. M., R. W., and Reynolds, 2005: A global merged land and sea surface temperature reconstruction based on historical observations (1880–1997). J Climate, 18, 2021–2036.CrossRefGoogle Scholar
  70. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged Land-Ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2293.CrossRefGoogle Scholar
  71. Thompson, D. W. J., J. J. Kennedy, J. M. Wallace, and P. D. Jones, 2008: A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature, 453, 646–649.CrossRefGoogle Scholar
  72. Thompson, D. W. J., J. M. Wallace, P. D. Jones, and J. J. Kennedy, 2009: Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights. J. Climate, 22, 6120–6141.CrossRefGoogle Scholar
  73. Trenberth, K. E., and Coauthors, 2007: Observations: surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. D. Solomon et al., Eds. Cambridge University Press, 235–336.Google Scholar
  74. Trewin, B., 2010: Exposure, instrumentation, and observing practice effects on land temperature measurements. Wiley Interdisciplinary Reviews: Climate Change, 1, 490–506, doi: 10.1002/wcc.46, 2010.Google Scholar
  75. Venema, V. K. C., and Coauthors, 2012: Benchmarking homogenization algorithms for monthly data. Climates of the Past, 8, 89–115.CrossRefGoogle Scholar
  76. Vose, R. S., and Coauthors, 2012: NOAA’s merged Land–Ocean surface temperature analysis. Bull. Amer. Meteor. Soc., 93, 1677–1685, doi: 10.1175/BAMS-D-11-00241.1.CrossRefGoogle Scholar
  77. Wang, F., Q. S. Ge, S. W. Wang, Q. X. Li, and P. D. Jones, 2015: A new estimation of urbanization’s contribution to the warming trend in China. J. Climate, 28, 8923–8938, doi: 10.1175/JCLI-D-14-00427.1.CrossRefGoogle Scholar
  78. Wang, J., Z. W. Yan, P. D. Jones, and J. J. Xia, 2013: On “observation minus reanalysis” method: A view from multidecadal variability. J. Geophys. Res., 118, 7450–7458, doi: 10.1002/ jgrd.50574.CrossRefGoogle Scholar
  79. Wickham, C., and Coauthors, 2013: Influence of urban heating on the global temperature land average using rural sites identified from MODIS classifications. Geoinfor Geostat: An Overview, 1, doi: 10.4172/2327-4581.1000104.Google Scholar
  80. Wilby, R. L., P. D. Jones, and D. H. Lister, 2011: Decadal variations in the nocturnal heat island of London. Weather, 66, 59–64. Woodruff, S. D., and Coauthors, 2011: ICOADS release 2.5: extensions and enhancements to the surface marine meteorological archive. Inter. J. Climatol., 31, 951–967, doi: 10.1002/joc.2103.CrossRefGoogle Scholar
  81. Xu, W. H., Q. X. Li, X. L. Wang, S. Yang, L. J. Cao, and Y. Feng, 2013: Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices. J. Geophys. Res., 118, 9708–9720, doi: 10.1002/jgrd. 50791.Google Scholar
  82. Zhao, P., P. D. Jones, L. J. Cao, Z. W. Yan, S. Y. Zha, Y. N. Zhu, Y. Yu, and G. L. Tang, 2014: Trend of surface air temperature in eastern china and associated large-scale climate variability over the last 100 years. J. Climate. 27, 4693–4703, doi: 10.1175/JCLI-D-13-00397.1.CrossRefGoogle Scholar
  83. Zhou, L. M., R. E. Dickinson, Y. H. Tian, J. Y. Fang, Q. X. Li, R. K. Kaufmann, C. J. Tucker, and R. B. Myneni, 2004: Evidence for a significant urbanization effect on climate in China. Proceedings of the National Academy of Sciences of the United States of America, 101, 9540–9544.CrossRefGoogle Scholar

Copyright information

© The author 2016

Authors and Affiliations

  1. 1.Climatic Research Unit, School of Environmental SciencesUniversity of East AngliaNorwichUK
  2. 2.Center of Excellence for Climate Change Research, Department of MeteorologyKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations