Skip to main content

Developed and developing world contributions to climate system change based on carbon dioxide, methane and nitrous oxide emissions

Abstract

One of the key issues in international climate negotiations is the formulation of targets for emissions reduction for all countries based on the principle of “common but differentiated responsibilities”. This formulation depends primarily on the quantitative attribution of the responsibilities of developed and developing countries for historical climate change. Using the Commuity Earth System Model (CESM), we estimate the responsibilities of developed countries and developing countries for climatic change from 1850 to 2005 using their carbon dioxide, methane and nitrous oxide emissions. The results indicate that developed countries contribute approximately 53%–61%, and developing countries approximately 39%–47%, to the increase in global air temperature, upper oceanic warming, sea-ice reduction in the NH, and permafrost degradation. In addition, the spatial heterogeneity of these changes from 1850 to 2005 is primarily attributed to the emissions of greenhouse gases (GHGs) in developed countries. Although uncertainties remain in the climate model and the external forcings used, GHG emissions in developed countries are the major contributor to the observed climate system changes in the 20th century.

References

  1. Allen, M. R., D. J. Frame, C. Huntingford, C. D. Jones, J. A. Lowe, M. Meinshausen, and N. Meinshausen, 2009: Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 458, 1163–1166.

    Article  Google Scholar 

  2. Andres, R. J., T. A. Boden, and G. Marland, 2013: Annual fossilfuel CO2 emissions: Isomass of emissions gridded by one degree latitude by one degree longitude. CDIAC, doi: 10.3334/CDIAC/ffe.AnnualIsomass.

    Google Scholar 

  3. Andronova, N., and M. Schlesinger, 2004: Importance of sulfate aerosol in evaluating the relative contributions of regional emissions to the historical global temperature change. Mitigation and Adaptation Strategies for Global Change, 9, 383–390.

    Article  Google Scholar 

  4. Davis, S. P., G. P. Peters, and K. Caldeira, 2011: The supply chain of CO2 emissions. Proc. Natl. Acad. Sci. USA, 108, 18554–18559.

    Article  Google Scholar 

  5. den Elzen, M. G. J., M. Berk, M. Schaeffer, J. Olivier, C. Hendriks, and B. Metz, 1999: The Brazilian proposal and other options for international burden sharing: An evaluation of methodological and policy aspects using the FAIR model. RIVM Report 728001011, 129 pp.

    Google Scholar 

  6. den Elzen, M. G. J., M. Schaeffer, and P. L. Lucas, 2005: Differentiating future commitments on the basis of countries’ relative historical responsibility for climate change: uncertainties in the “Brazilian proposal” in the context of a policy implementation. Climatic Change, 71, 277–301.

    Article  Google Scholar 

  7. den Elzen, M. G. J., J. G. J. Olivier, N. Höhne, and G. Janssens-Michel, 2013: Countries’ contributions to climate change: Effect of accounting for all greenhouse gases, recent trends, Basic needs and technological progress. Climatic Change, 121, 397–412.

    Article  Google Scholar 

  8. Ding, Z. L., X. N. Duan, Q. S. Ge, and Z. Q. Zhang, 2009: Control of atmospheric CO2 concentrations by 2050: A calculation on the emission rights of different countries. Science in China Series D: Earth Sciences, 52, 1447–1469.

    Article  Google Scholar 

  9. Feng, J. M., T. Wei, W. J. Dong, Q. Z. Wu, and Y. L. Wang, 2014: CMIP5/AMIP GCM simulations of East Asian summer monsoon. Adv. Atmos. Sci., 31, 836–850, doi: 10.1007/s00376-013-3131-y.

    Article  Google Scholar 

  10. Flato, G., and Coauthors, 2013: Evaluation of Climate Models. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds. Cambridge University Press, 741–866.

    Google Scholar 

  11. Frank, D. C., J. Esper, C. C. Raible, U. Büntgen, V. Trouet, B. Stocker, and F. Joos, 2010: Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature, 463, 527–530.

    Article  Google Scholar 

  12. Fung, I. Y., S. C. Donry, K. Lindsay, and J. John, 2005: Evolution of carbon sinks in a changing climate. Proc. Natl. Acad. Sci. USA, 102, 11201–11206.

    Article  Google Scholar 

  13. Gent, P. R., and Coauthors, 2011: The community climate system model version 4. J. Climate, 24, 4973–4991.

    Article  Google Scholar 

  14. Giorgi, F., and R. Francisco, 2000: Uncertainties in regional climate change prediction: A regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Climate Dyn., 16, 169–182.

    Article  Google Scholar 

  15. Harvey, D., and Coauthors, 1997: An introduction to simple climate models used in the IPCC second assessment report, T. H. John et al., Eds. IPCC technical paper II-February 1997, IPCC, Geneva, Switzerland, 52 pp.

    Google Scholar 

  16. He, J. K., W. Y. Chen, F. Teng, and B. Liu, 2009: Long-term climate change mitigation target and carbon permit allocation. Advances in Climate Change Research, 5, 362–368. (in Chinese)

    Google Scholar 

  17. Höhne, N., and K. Blok, 2005: Calculating historical contributions to climate change-discussing the “Brazilian Proposal”. Climatic Change, 71, 141–173.

    Article  Google Scholar 

  18. Höhne, N., and Coauthors, 2011: Contributions of individual countries’ emissions to climate change and their uncertainty. Climatic Change, 106, 359–391.

    Article  Google Scholar 

  19. IPCC, 1996: Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton et al., Eds. Cambridge University Press, 572 pp.

  20. IPCC, 2013: Summary for Policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds. Cambridge University Press, 1–30.

  21. Jones, C., and Coauthors, 2013: Twenty-first-century compatible CO2 Emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J. Climate, 26, 4398–413.

    Article  Google Scholar 

  22. Lachenbruch, A. H., and B. V. Marshall, 1986: Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic. Science, 234, 689–696.

    Article  Google Scholar 

  23. Le Quéré, C., and Coauthors, 2009: Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2, 831–836.

    Article  Google Scholar 

  24. Liu, Z., and Coauthors, 2015: Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 524, 335–338.

    Article  Google Scholar 

  25. Matthews, H. D., N. P. Gillett, P. A. Stott, and K. Zickfeld, 2009: The proportionality of global warming to cumulative carbon emissions. Nature, 459, 829–832.

    Article  Google Scholar 

  26. Matthews, H. D., T. L. Graham, S. Keverian, C. Lamontagne, D. Seto, and T. J. Smith, 2014: National contributions to observed global warming. Environmental Research Letters, 9, 014010.

    Article  Google Scholar 

  27. Neale, R. B., and Coauthors, 2010: Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+ STR.

    Google Scholar 

  28. Osterkamp, T. E., 2005: The recent warming of permafrost in Alaska. Global and Planetary Change, 49, 187–202

    Article  Google Scholar 

  29. Peters, G. P., J. C. Minx, C. L. Weber and O. Edenhofer, 2011: Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl. Acad. Sci. USA, 108, 8903–8908.

    Article  Google Scholar 

  30. Prather, M. J., and Coauthors, 2009: Tracking uncertainties in the causal chain from human activities to climate. Geophys. Res. Lett., 36, L05707, doi: 10.1029/2008GL036474.

    Google Scholar 

  31. Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 2648–2663.

    Article  Google Scholar 

  32. Rosa, L. P., S. K. Ribeiro, M. S. Muylaert, and C. P. de Campos, 2004: Comments on the Brazilian proposal and contributions to global temperature increase with different climate responses—CO2 emissions due to fossil fuels, CO2 emissions due to land use change. Energy Policy, 32, 1499–1510.

    Article  Google Scholar 

  33. Shu, Q., Z. Song, and F. Qiao, 2015: Assessment of sea ice simulations in the CMIP5 models. Cryosphere, 9, 399–409.

    Article  Google Scholar 

  34. Slater, A. G., and D. M. Lawrence, 2013: Diagnosing present and future permafrost from climate models. J. Climate, 26, 5608–5623.

    Article  Google Scholar 

  35. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  36. Trudinger, C., and I. Enting, 2005: Comparison of formalisms for attributing responsibility for climate change: Non-linearities in the Brazilian Proposal. Climatic Change, 68, 67–99.

    Article  Google Scholar 

  37. UNFCCC, 1997: Paper No. 1: Brazil; proposed elements of a protocol to the United Nations framework convention on climate change. No. UNFCCC/AGBM/1997/MISC.1/Add.3 GE.97. Bonn.

    Google Scholar 

  38. UNFCCC, 2002: Methodological issues. Scientific and methodological assessment of contributions to climate change. Report of the Expert Meeting, Note by the Secretariat. FCCC/SBSTA/2002/INF.14.

    Google Scholar 

  39. Ward, D. S. and N. M. Mahowald, 2014: Contributions of developed and developing countries to global climate forcing and surface temperature change. Environmental Research Letters, 9, 074008.

    Article  Google Scholar 

  40. Wei, T., and Coauthors, 2012: Developed and developing world responsibilities for historical climate change and CO2 mitigation. Proc. Natl. Acad. Sci. USA, 109, 12911–12915.

    Article  Google Scholar 

  41. Wei, T., W. J. Dong, W. P. Yuan, X. D. Yan, and Y. Guo, 2014: Influence of the carbon cycle on the attribution of responsibility for climate change. Chinese Science Bulletin, 59, 2356–2362.

    Article  Google Scholar 

  42. Wei, T., W. J. Dong, B. Y. Wu, S. L. Yang, and Q. Yan, 2015: Influence of recent carbon emissions on the attribution of responsibility for climate change. Chinese Science Bulletin, 60, 674–680. (in Chinese)

    Article  Google Scholar 

  43. Yan, Q., H. J. Wang, O. M. Johannessen, and Z. S. Zhang, 2014: Greenland ice sheet contribution to future global sea level rise based on CMIP5 models. Adv. Atmos. Sci., 31, 8–16, doi: 10.1007/s00376-013-3002-6.

    Article  Google Scholar 

  44. Zhang, Z. Q., J. S. Qu, and J. J. Zeng, 2008: A quantitative comparison and analytical study on the assessment indicators of greenhouse gases emissions. Acta Geographica Sinica, 63, 693–702. (in Chinese)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenjie Dong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Dong, W., Yan, Q. et al. Developed and developing world contributions to climate system change based on carbon dioxide, methane and nitrous oxide emissions. Adv. Atmos. Sci. 33, 632–643 (2016). https://doi.org/10.1007/s00376-015-5141-4

Download citation

Key words

  • greenhouse gases
  • earth system model
  • climate change
  • climate modeling